• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
计及需求响应和深度结构多任务学习的电力系统短期负荷预测
Power System Short-term Load Forecasting Considering Demand Response and Multi-Task Learning based on Deep Structure
Received:May 18, 2018  Revised:May 18, 2018
DOI:10.19753/j.issn1001-1390.2019.016.009
中文关键词: 需求响应  电力负荷预测  深度学习  Spark平台
英文关键词: Demand Response  Power load forecasting  Deep learning  Spark platform
基金项目:国家自然科学基金资助项目(71501071)
Author NameAffiliationE-mail
matiannan* State Grid Sichuan Economic Research Institute matiannan_1234@126.com 
wangchao State Grid Sichuan Economic Research Institute chaochao91812@126.com 
penglilin Sichuan Power Exchange Center Co.Ltd, penglilinbj@126.com 
guoxiaofan State Grid Sichuan Economic Research Institute guoxiao-fan1990@126.com 
fuming Beijing Hualian Electrical Engineering Supervision Company fuming@heesc.com 
Hits: 2013
Download times: 547
中文摘要:
      随着需求响应技术的快速发展,使得电力系统负荷数据呈现出规模庞大、结构复杂的非线性特征,基于深度机器学习和高效数据处理平台的负荷预测方法是当前的研究重点。为实现计及需求响应的电力系统短期负荷预测,建立了基于Spark平台和时钟频率驱动循环神经网络(CW-RNNs)的短期负荷预测方法。首先,在Spark平台上设置不同工作组将全部数据分割为多个子数据模块,通过并行化计算提高数据处理效率,进而基于需求响应技术对负荷曲线做出调整,计算得到用户预期收益和用户舒适度影响指标值;其次,采用离散小波变换将调整后的负荷曲线分解,得到一组高、低频信号;并采用偏最小二乘回归模型和CW-RNNs回归模型分别对低、高频信号进行训练学习;最后,将训练好的PLS模型和CW-RNNs模型通过加权平均得到最终组合预测模型(Spark-CW-RNNs)。通过实例计算验证算法的准确性和有效性,结果表明:Spark-CW-RNNs模型比其他单一模型的预测误差更小、预测精度更高,模型具有有效性和可行性。
英文摘要:
      With the rapid development of demand response technology, the load data of power system has been presented with large scale and complex nonlinear characteristics. And the load forecasting method based on deep learning and efficient data processing platform becomes the current research focus. Based on the Spark processing platform and the clock recurrent neural network(CW-RNNs), the short-term load forecasting method is established to realize the prediction of the ultra-short term load of the integrated energy systems with the demand response. Firstly, different working groups are set up on the Spark platform to divide all the data into multiple sub-data modules. The data processing efficiency is improved by the parallelization calculation, and the load curve is adjusted based on the dmand response to calculate the expected benefits and user comfort index value. Secondly, the discrete wavelet transform in used to decompose the adjusted load curve to obtain a set of high and low frequency signals. The low and high frequency signals are trained by the partial least squares regression model and CW-RNNs regression model respectively. Finally, the well-trained PLS model and the CW-RNNs model are combined to obtain the final combination forecasting model(Spark-CW-RNNs). The results show that the forecasting errors of Spark-CW-RNNs model is smaller than that of other single models, and the prediction accuracy is higher. The proposed ultra-short term load forecasting model is effective and feasible.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd