• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于最优窗宽核密度估计的短期负荷区间预测
Short-term load interval forecasting based on kernel density estimation with optimal window width
Received:May 24, 2018  Revised:May 24, 2018
DOI:10.19753/j.issn1001-1390.2019.014.010
中文关键词: 短期负荷区间预测  核密度估计  最优窗宽  置信区间  最小二乘支持向量机
英文关键词: short-term  load interval  forecasting, kernel  density estimation, optimal  window width, confidence  interval, least  squares support  vector machine
基金项目:
Author NameAffiliationE-mail
Zhao Xingchang* School of Information Science and Engineering,Shenyang University of Technology 897938047@qq.com 
Zhang Yuxian School of Electrical Engineering, Shenyang University of Technology yuxian524524@163.com 
Xing Zuoxia School of Electrical Engineering, Shenyang University of Technology zingzuox@163.com 
Hits: 1870
Download times: 696
中文摘要:
      针对确定性短期负荷预测难以满足电力需求中可变性决策问题,提出一种基于最优窗宽高斯核密度估计的短期负荷区间预测方法。该方法利用最小二乘支持向量机对负荷进行确定性预测,根据对历史负荷相对误差特征的统计分析,采用核密度估计方法及最优窗宽选择,对各区域内的相对误差建立密度函数,实现短期负荷的区间预测。以浙江某地区的负荷数据为例,给出了不同置信度下的负荷区间预测,将所提出的方法与固定窗宽的负荷区间预测效果做比对,在相同置信度下所提出方法的区间覆盖率有明显提高并且区间宽度有所降低。
英文摘要:
      The deterministic load prediction is difficult to meet the variability decision in power demand. A short-term load interval forecasting based on Gaussian kernel density estimation with optimal window width is presented. The deterministic load prediction is carried out by least squares support vector machine, then, on the premise of characteristic statistics of historical load relative error, the kernel density estimation method is used to select the Gauss kernel function and the optimal window width is used to establish the density function for the relative error in each region. Taking the load data in one area of Zhejiang as an example, the results of load intervals forecasting are given under different confidence levels. The proposed forecasting with optimal window width is compared with the load forecasting with fixed window width, the interval coverage of the proposed intervals forecasting is obviously improved and the interval width is reduced under the same confidence level.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd