• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
考虑不确定因素的多能互补智慧能源系统经济优化调度
Economical optimal operation of intelligent multi-energy complementary energy system considering uncertainty
Received:June 07, 2018  Revised:June 14, 2018
DOI:10.19753/j.issn1001-1390.2019.015.014
中文关键词: 多能互补系统  傅里叶拟合  随机模糊理论  粒子群算法  优化调度
英文关键词: multi-energy  complementary system, Fourier  fitting, random-fuzzy  theory, particle  swarm optimization, optimal  scheduling
基金项目:
Author NameAffiliationE-mail
Lu Xin School of Electronic Engineering, Southeast University happy_lu@126.com 
Wu Minglei Electric Power Research Institute of State Grid Tianjin Electric Power Company 011901122@163.com 
Zhu Rui* Electric Power Research Institute of State Grid Tianjin Electric Power Company shadowviper@qq.com 
Liu Kaicheng Electric Power Research Institute of State Grid Tianjin Electric Power Company liukaicheng@epri.sgcc.com.cn 
Zhang Hongliang Central South University csu13574831278@csu.edu.cn 
Hits: 1553
Download times: 583
中文摘要:
      针对多能互补系统源荷端的不确定性对系统调度和运行的影响,分析了可再生能源与冷热电负荷的随机性与模糊性。首先基于二阶傅里叶拟合法对源荷分布进行描述,并对拟合参数分布进行模糊化,从而建立了可再生能源和冷热电负荷的随机模糊模型。采用随机模糊变量的期望值、乐观值和悲观值的定义,得到了给定置信水平下变量的期望值与波动区间上下限。通过粒子群算法,计算出了以经济性为目标的CCHP型多能互补系统优化调度结果,并分析了不确定因素对优化调度结果产生的影响。结果表明随机模糊模型对系统不确定性因素的影响研究具有实用性与有效性。
英文摘要:
      Considering the influence on operation of multi-energy system from the uncertainty of source-load and analyzing the randomness and fuzziness of renewable energy and loads of cooling, heating and power. The distribution of renewable energy and loads of cooling, heating and power is built through 2-stage Fourier fitting. Then, fuzzing the fitting parameters distribution in order to get build the random-fuzzy model. According to the definition of expectation, optimistic value, and pessimistic value, the expectation and fluctuation limit based on confidence level is calculated in order to verify the efficiency of model. Through the particle swarm optimization, the scheduling result of CCHP system based on economic is calculated. And the influence of optimization result from uncertainty is analyzed. The result confirms that the random-fuzzy model is efficient and particle.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd