• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于GOA-SVM的短期负荷预测
Short-term load forecasting based on GOA-SVM
Received:June 11, 2018  Revised:June 11, 2018
DOI:10.19753/j.issn1001-1390.2019.014.003
中文关键词: 短期负荷预测  支持向量机  蚱蜢优化算法
英文关键词: short-term  load forecasting, support  vector machine(SVM), grasshopper  optimization algorithm
基金项目:
Author NameAffiliationE-mail
Gong Yubin* College of Electrical Engineering and Information,Sichuan University 791583757@qq.com 
Teng Huan College of Electrical Engineering and Information,Sichuan University 434988455@qq.com 
Hits: 1710
Download times: 467
中文摘要:
      支持向量机是借助于凸优化技术的统计学习方法,与传统神经网络相比,泛化错误率低并且结果易于解释。将支持向量机用于负荷预测时,参数选择不准确会导致预测性能较差。提出一种基于蚱蜢优化算法的支持向量机短期负荷预测方法,以某地区负荷、天气等历史数据对SVM进行训练,并通过GOA优化选取支持向量机参数,然后以得到的最优参数建立GOA-SVM负荷预测模型。算例分析表明,GOA-SVM预测模型比GA-SVM和PSO-SVM模型有更好的收敛性能,且预测精度更高。
英文摘要:
      Support vector machine (SVM) is a statistical learning method based on structural risk minimization principle. Compared with traditional neural network, the generalization error rate is low and the result is easy to explain. When SVM is applied to load forecasting, the inaccurate selection of parameters will result in poor prediction performance. A short-term load forecasting method of support vector machine based on grasshopper optimization algorithm is proposed. SVM is trained with historical data such as load and weather in a certain area. The parameters of support vector machine are selected by GOA, and then the GOA-SVM load forecasting model is established with the optimal parameters obtained. The example analysis shows that the GOA-SVM model has better convergence performance and higher prediction accuracy than GA-SVM and PSO-SVM models.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd