• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
适用于大规模系统的两阶段机组组合优化方法
Two-stage optimization method for unit commitment of large-scale system
Received:June 21, 2018  Revised:June 21, 2018
DOI:10.19753/j.issn1001-1390.2019.016.002
中文关键词: 机组组合  优先顺序法  排序指标  调整策略  改进粒子群法
英文关键词: unit commitment, priority list method, ranking index, adjustment strategy, improved particle swarm optimization algorithm
基金项目:大规模风电场群接入的输电系统规划研究(51337005),国家自然科学基金项目( 重点项目)
Author NameAffiliationE-mail
jiangli Southwest China Branch, State Grid Corporation of China 375310472@qq.com 
yuanyang* Shanghai Jiao Tong University 244967006@qq.com 
周全   
柳璐   
程浩忠   
罗春林   
Hits: 1734
Download times: 566
中文摘要:
      本文提出一种两阶段优化方法以简单、快速、有效地求解大规模系统的机组组合问题。第一阶段采用改进优先顺序法快速安排机组启停计划。首先,针对传统PL法排序指标单一,不能全面评价机组运行费用的不足,引入可调发电机组煤耗、机组最大出力、机组启动成本三个指标、,全面反映发电机组的经济性;其次,不同于传统PL法先安排机组启停满足旋转备用,再调整机组状态满足最小启停时间,本文同时考虑这两个约束,以更好地实现优先开启运行费用较小的机组。第二阶段采用改进粒子群算法优化机组经济调度。针对原始PSO较难满足功率平衡约束这一等式约束的不足,提出一种考虑机组爬坡率的功率平衡调整策略,保证粒子的多样性的同时避免快速收敛到局部最优解,提高最终解的质量。将所提方法应用于10机组、20机组、40机组、60机组80机组以及100 机组 24 时段6个系统进行测试,并与其它方法进行对比,数值结果表明,所提两阶段优化方法计算快速、收敛性良好、能够有效解决大规模系统机组组合问题。
英文摘要:
      This paper proposes a two-stage optimization method to solve the unit commitment of a large-scale system. First, the improved priority list method is used to quickly arrange the start-stop of the unit. Three parameters of the adjustable generator unit coal consumption, unit maximum output, unit startup cost is introduced to comprehensively reflect the economics of the generator; different from the traditional PL method, which firstly arranges the unit to start and stop to meet the rotation reserve, and then adjusts the unit state to meet the minimum start-stop time. This paper considers these two constraints at the same time to better achieve the priority to start the unit with lower operating cost. The improved particle swarm optimization algorithm is used to optimize the unit's economic dispatch. Tthis paper proposes a power balance adjustment strategy considering the unit's climbing rate, which ensures the diversity of particles while avoiding rapid convergence to the local optimal solution. The proposed method is applied to 10 units, 20 units, 40 units, 60 units and 80 units, and 100 units and 24 periods of time systems to be tested, and compared with other methods. The numerical results show that the proposed two-stage optimization method is fast, and its convergence is good and can effectively solve large-scale system unit combination problems.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd