• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于二维离散模糊数的非侵入式负荷辨识方法
Non-intrusive Load Identification Method Based on Two-dimensional Discrete Fuzzy Numbers
Received:June 25, 2018  Revised:June 25, 2018
DOI:10.19753/j.issn1001-1390.2019.016.003
中文关键词: 非侵入式  电力负荷分解  P-Q维特征  二维离散模糊数
英文关键词: non-intrusive, power  load decomposition, P-Q  dimension feature, two-dimensional  discrete fuzzy  number
基金项目:
Author NameAffiliationE-mail
Kang Wentao State Grid Jiyuan Power Supply Company xiaohonglin@whu.edu.cn 
Lin Xiaohong* Wuhan University xiaohonglin@whu.edu.cn 
Shi Shuaibin State Grid Jiyuan Power Supply Company xiaohonglin@whu.edu.cn 
Zhou Dongguo Wuhan University xiaohonglin@whu.edu.cn 
Hu Wenshan Wuhan University xiaohonglin@whu.edu.cn 
Deng Qijun Wuhan University xiaohonglin@whu.edu.cn 
Hits: 1248
Download times: 462
中文摘要:
      针对非侵入式负荷辨识中硬性聚类方法易受到电压、电流等干扰因素的影响,本文提出了一种基于离散模糊数的负荷辨识方法。本方法以有功P和无功Q这两种典型的负荷标签特征为出发点,以离散模糊数中有限链路为评价等级基础,构建了基于概率统计的评价方法,将相似特征的用电设备通过转换为离散模糊数矩阵,并结合矩阵质心和评判标准的比例形成最终评价值,进而实现负荷的辨识。相比于硬性聚类方法,本方法具有不单独依赖于P-Q维负荷特征,而是通过负荷对象的评价值方法得出辨识结果,最后通过真实实验验证,证明了本文方法得到的结果与实际的负荷投切结果一致,具有一定的抗干扰能力。
英文摘要:
      Since the hard clustering method is susceptible to interference factors such as voltage and current in the non-intrusive load identification, this paper proposes a load identification method based on discrete fuzzy numbers. This method takes the characteristic of active load P and reactive power Q as the starting point. And it uses the finite links in discrete fuzzy numbers as the basis of evaluation level to construct an evaluation method based on probability and statistics. Then it converts the electrical equipment with similar characteristics into a discrete fuzzy matrix, and combines the matrix centroid and the ratio of the evaluation criteria to form the final evaluation value, thereby realizing the load identification. Compared with the hard clustering method, this method does not rely solely on the P-Q dimensional load characteristics. Instead, it uses the evaluation method of the load object to obtain the identification result. Finally, it is proved by real experiments that the results obtained by this method are consistent with the actual load switching results and have certain anti-interference ability.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd