• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
海量数据驱动的变压器故障类型高性能诊断方法
High performance diagnostic method of transformer fault type based on mass data driving
Received:July 02, 2018  Revised:July 02, 2018
DOI:10.19753/j.issn1001-1390.2019.017.015
中文关键词: 电力变压器  故障诊断  海量数据  DGA  Spark  BPNN  插值-随机抽样
英文关键词: power transformer  fault diagnosis  mass data  DGA  Spark  BPNN  interpolated-random sampling
基金项目:
Author NameAffiliationE-mail
Liu Yang School of Electrical Engineering and Information,Sichuan University 1640406407@qq.com 
LIU Yang②* School of Electrical Engineering and Information,Sichuan University yang.liu@scu.edu.cn 
Xu Lixiong School of Electrical Engineering and Information,Sichuan University xulixiong@163.com 
Ma Chenxiao School of Electrical Engineering and Information,Sichuan University machx@stu.scu.edu.cn 
YANG Deyang School of Electrical Engineering and Information, Sichuan University 1327536363@qq.com 
Hits: 1404
Download times: 521
中文摘要:
      电力变压器故障与否直接影响电力系统运行可靠性,准确且高效的变压器故障诊断有助于及时发现电网不安全因素。本文提出一种基于海量数据驱动的优选训练样本的分布式神经网络决策变压器故障类型方法。首先通过比值法求取DGA的比值型特征向量,根据皮尔逊相关系数和欧氏距离双指标计算方法在各类别中选取更具该类代表性数据作为训练样本;再通过插值-随机抽样方法应对训练样本类间数据不平衡问题并对其进行抽样分块;为适应海量数据处理,在Spark平台上将BPNN算法并行化实现以提高算法性能表现,各BPNN学习不同训练样本块构建性能不同的子分类器;最后对子分类结果多数投票得到最终诊断类型。算例表明所提方法对变压器故障类型诊断效果良好,诊断正确率较IEC三比值法和传统串行BPNN高,证明了该方法对于变压器故障类型诊断的有效性与适用性。
英文摘要:
      The performance of power transformer directly affects the operation reliability of power system. Accurate and efficient transformer fault diagnosis can help to discover the unsafe factors of power grid in time. In this paper, a distributed neural network decision method of transformer fault type diagnosis based on massive data driven is presented. The ratio method is used to obtain the ratio type eigenvector of DGA. According to the Pearson correlation coefficient and the Euclidean distance calculation, the representative data of each class are selected as the training samples. The BPNN algorithm is parallelized on Spark to adapt to mass data processing. The samples are divided into pieces by interpolated random sampling, and sub classifiers with different performance are constructed through BPNN learning different training pieces. Finally, the final diagnosis type is obtained by majority voting of sub classification results. The example shows that the method has a good effect on diagnosis of transformer fault type. It is more accurate than the IEC three ratio codes and the standalone BPNN diagnosis result. It also proves the validity and applicability of the method for transformer fault type diagnosis.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd