• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
湍流值对风电功率预测的影响与分析
Influence and analysis of turbulence value on wind power prediction
Received:July 14, 2018  Revised:July 14, 2018
DOI:
中文关键词: SVM  模糊聚类  湍流值  相似日
英文关键词: SVM, Fuzzy Cluster, Turbulence Value, Similar day
基金项目:国家自然科学基金资助项目(41606220);国家自然科学基金资助项目(41776199);山西省自然科学基金资助项目(201701D121127)
Author NameAffiliationE-mail
Chen Yan* College of Electrical and Power Engineering,Taiyuan University of Technology chenyanlxq@163.com 
Ma Chunyan College of Electrical and Power Engineering,Taiyuan University of Technology tyutchyma@sina.com 
Tan Peiran Metrology Center of Shanxi electric power company tanpeiran1@163.com 
Dou Yinke College of Electrical and Power Engineering,Taiyuan University of Technology douyk8888cn@126.com 
Chang Xiaomin College of Water Conservancy Science and Engineering,Taiyuan University of Technology 305643669@qq.com 
Hits: 1938
Download times: 910
中文摘要:
      风电功率预测是缓解弃风现象的有效手段。本文将针对风电波动性,提出一种在模糊C均值聚类算法(Fuzzy C-Means algorithm,FCM)中引入湍流值IT的风电功率预测方法。在FCM算法中引入湍流值IT对训练样本进行聚类,可以进一步增强训练样本与预测样本间的相似性,避免因训练样本减少,导致风电功率波动性影响能力增大的情况。以山西某风电场实测数据为依据,在MATLAB平台上通过支持向量机(Support Vector Machine,SVM)对FCM的聚类结果进行训练和预测,仿真结果表明,FCM-IT-SVM能有效增强风电功率的相似性,减小预测误差。
英文摘要:
      Wind power prediction is an effective means to reduce the phenomenon of abandonment of wind power. This paper provides a means that introduce turbulence value IT in Fuzzy C-Means algorithm (FCM), which can further enhance the similarity between the predicted samples and the training samples, avoid the negative impact of wind power fluctuation due to the decrease of the training samples. This method is verified on MATLAB platform, where the prediction result is generated based on measured dates from a wind farm in Shanxi by Support Vector Machine (SVM) and FCM. From the consequence we can see that FCM-IT-SVM can be able to strengthen the similarity of wind power, and reduce the error of wind power prediction effectively.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd