• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于拓扑解析与深度学习融合的低压集抄系统故障诊断方法
Fault Diagnosis Method for Low-voltage Centralized Meter Reading System Based on Physical ToPology-Data Learning
Received:August 08, 2018  Revised:October 04, 2018
DOI:10.19753/j.issn1001-1390.2019.020.025
中文关键词: 低压集抄系统  拓扑解析  深度学习  深度置信网络  故障诊断
英文关键词: LV  centralized meter  reading system, topology  analysis, deep  learning, deep  belief network, fault  diagnosis
基金项目:中国南方电网有限责任公司科技项目(GDKJXM20162183)、国家自然科学(51577073)
Author NameAffiliationE-mail
LUO Busheng Huizhou Power Supply Bureau,Huizhou,Guangdong Province,516001 654079302@qq.com 
LIN Zhichao Huizhou Power Supply Bureau,Huizhou,Guangdong Province,516001 654079302@qq.com 
HE Xiaolong Huizhou Power Supply Bureau,Huizhou,Guangdong Province,516001 15819889926@139.com 
Hits: 1261
Download times: 475
中文摘要:
      针对低压集抄系统故障形式多样复杂、当前运维水平难以满足日益上升的用户需求的问题,提出了一种融合拓扑解析及深度学习的低压集抄系统故障诊断方法。从规划和运行两个阶段出发,分析变压器-集中器、集中器-电能表关联关系,对低压集抄系统拓扑结构进行解析。结合确定的物理拓扑及信息流动路径,基于深度学习理论,通过对涌现故障事件离线学习自动建立基于深度置信网络的故障诊断模型。根据在线获取的系统关键运行特征,建立系统故障断面特征向量,通过训练好的系统诊断模型获得最终诊断结果。算例结果表明,本文方法能有效准确地实现低压集抄系统故障诊断,能有效应对故障特征信息遗漏和错误的情况。
英文摘要:
      Aiming at the problems that the faults in low-voltage centralized meter reading system are complex and the current operation and maintenance is difficult to meet the harsh user demand, we proposed a fault diagnosis method for LV centralized meter reading system based on topology analysis-deep learning. Starting from the two stages, planning and operation, we analyzed the transformer-concentrator association and concentrator-electric energy meter association to diagnose the physical topology of LV centralized meter reading system. Based on the determined physical topology and information flow path, a deep belief network fault diagnosis model is automatically established by offline learning with emerging fault events. Online obtaining the vital systematic operation character, the system fault section feature vector is established and sent to the well-trained fault diagnosis model for final diagnosis result. The result of the case study have showed that the proposed method can effectively and accurately diagnose the fault in LV centralized meter reading system, and it’s effective to deal with the case of the missing information and wrong information.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd