• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于权重指数递减粒子群算法在光伏MPPT中的应用
Application of weighted index declining particle swarm optimization algorithm in photovoltaic MPPT
Received:August 12, 2018  Revised:August 12, 2018
DOI:10.19753/j.issn1001-1390.2019.021.014
中文关键词: 光伏发电  最大功率跟踪  粒子群算法  精英突变  权重指数递减
英文关键词: PV, maximum  power tracking, PSO, elite  mutation, weight  index decreasing
基金项目:山东省自然科学基金资助项目(ZR2012FL19);山东省淄博市科技发展资助项目(2013GG01110);山东省高等学校科技发展计划资助项目(J15LN31)
Author NameAffiliationE-mail
Wu Fanyan School of Electrical and Electronic Engineering,Shandong University of Technology,Zibo fanyan0226@163.com 
Li Tianze* School of Electrical and Electronic Engineering,Shandong University of Technology,Zibo ltzwang@163.com 
Xu Yanan School of Electrical and Electronic Engineering,Shandong University of Technology,Zibo ynx_94@163.com 
Zhao Qihao School of Electrical and Electronic Engineering,Shandong University of Technology,Zibo 1007146220@qq.com 
Han Xiaoyu School of Electrical and Electronic Engineering,Shandong University of Technology,Zibo 749867751@qq.com 
Hits: 1570
Download times: 603
中文摘要:
      针对光伏阵列局部遮阴情况下输出电压-功率曲线呈现多峰特性,传统粒子群算法进行最大功率跟踪时会陷入局部最优的问题,提出了权重指数递减粒子群算法。该算法通过改变粒子搜索方式,在每次迭代结束前对搜寻到的最优粒子执行精英突变,对反方向空间进行搜索;并添加惯性权重调节参数,其惯性权重随迭代次数的增加以指数形式递减,使算法前期跳出局部最优点的能力提高以及后期搜索更加准确。仿真结果表明,该算法在遮阴或者光照突变情况下,均能准确的追踪到最大功率点,能有效避免陷入局部最优点,收敛速度较快,能够在复杂情况下实现最大功率追踪。
英文摘要:
      The output voltage-power curve exhibits multi-peak characteristics for the local shading of the PV array. The traditional particle swarm optimization algorithm will fall into the local optimal problem when the maximum power tracking is performed. In this paper, the weight index decreasing particle swarm optimization (PSO) algorithm is proposed. By changing the particle search method, the elite mutation is performed on the searched optimal particle before the end of each iteration, and the reverse direction space is searched; and the inertia weight adjustment parameter is added, and the inertia weight is exponentially increased with the number of iterations. Decrement, so that the ability of the algorithm to jump out of the local best advantage in the early stage and the later search is more accurate. The simulation results show that the algorithm can accurately track the maximum power point under the condition of shading or sudden change of light, which can effectively avoid the local best advantage, and the convergence speed is fast, which can achieve maximum power tracking under complex conditions.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd