• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于气象成分分解的夏季短期负荷预测
Short-term load forecasting in summer based on meteorological factors decomposition
Received:August 13, 2018  Revised:August 13, 2018
DOI:10.19753/j.issn1001-1390.2019.021.021
中文关键词: 短期负荷预测  气象成分分解  气象波动因素  XGBoost
英文关键词: short-term load forecasting, meteorological factors decomposition, weather fluctuation factors, XGBoost
基金项目:基于分布式潮流控制的输电网柔性交流潮流控制技术研究(52150016006b)
Author NameAffiliationE-mail
Liu Yifeng State Grid Hubei Power Grid Co Ltd liuyifeng1201@qq.com 
Zhou Hui* Beijing Tsintergy Technology Co. Ltd zhouhui8525@163.com 
Liu Xin State Grid Hubei Power Grid Co Ltd 259312082@qq.com 
Wang Yang Beijing Tsintergy Technology Co. Ltd wangyang@tsintergy.com 
Zhen Yupeng State Grid Hubei Power Grid Co Ltd zheng_yup@126.com 
Shao Lizhen State Grid Hubei Power Grid Co Ltd shaolz@126.com 
Hits: 1346
Download times: 533
中文摘要:
      夏季负荷受温度等气象因素影响大,表现出随机性强、波动性大的特点。针对现有短期负荷预测模型在夏季预测精度不高的问题,提出在负荷成分分解的同时,将温度分解为日周期分量和波动分量,以此准确把握短时气象波动对夏季短期负荷预测的影响。在充分分析负荷各分量变化趋势及对整体负荷预测精度影响的基础上,针对各个负荷分量特征分别选择预测方法。在预测气象敏感负荷分量时引入温度波动分量,基于XGBoost智能算法构建预测模型。选用我国中部某市夏季历史负荷建立训练样本,对2017年8月份日96点负荷进行预测,预测结果验证了所提模型和算法的有效性。
英文摘要:
      The summer load is greatly affected by meteorological factors such as temperature, showing the characteristics of strong randomness and large fluctuation. To solve the problem of the low short-term load forecasting precision of the existing models in Summer, it is proposed to decompose the temperature into daily periodic components and fluctuation components while the load components are decomposed, which is beneficial to accurately grasp the impact of short-term weather fluctuations on short-term load forecasting. After analyzing the variation feature of each load component and its impact on the forecasting accuracy of the overall load, the forecasting method for each load components is designed respectively according to their different feature. Taking the temperature fluctuation components into consideration while forecasting the weather-sensitive load, a short-term load forecasting model is constructed based on the XGBoost algorithm. The historic summer load of a middle city of China is chosen to establish the training samples, the results of 96 time points load in August 2017 show the proposed forecasting model and algorithm are effective.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd