• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于深度学习的PRPD数据特征提取方法
Feature extraction of PRPD data based on deep learning
Received:August 16, 2018  Revised:August 16, 2018
DOI:10.19753/j.issn1001-1390.2020.03.016
中文关键词: 局部放电  灰度图  特征提取  残差网络  模式识别
英文关键词: partial  discharge, gray-scale  maps, feature  extraction, residual  network, pattern  recognition
基金项目:
Author NameAffiliationE-mail
YANG JINGGANG Jiangsu Electric Power Company Research Institute,Nanjing huzi_yang@163.com 
Deng Min REDPHASE INC dengmin@redphase.com.cn 
MA YONG Jiangsu Electric Power Company Research Institute,Nanjing ma.y@foxmail.com 
TIAN YANGPU* REDPHASE INC ianyangpu@redphase.com.cn 
LI YUJIE Jiangsu Electric Power Company Research Institute,Nanjing 15850604673@163.com 
Ai Chun REDPHASE INC aichun@redphase.com.cn 
Hits: 2361
Download times: 678
中文摘要:
      气体绝缘金属封闭开关设备(Gas Insulated Switchgear,GIS)局部放电(Partial Discharge,PD)的传统特征提取具有依赖专家经验、盲目性高、识别率低的缺点,本文将局部放电PRPD数据转变为灰度图,利用卷积神经网络强大的特征自适应提取能力提取灰度图的辨识特征,并将特征应用于经典分类器如SVM、随机森林,BP神经网络等,实现深度学习方法和传统机器学习方法地有效融合。实验表明,该方法提取的特征具有更高的辨识度,可以有效提升局部放电模式识别的准确率。
英文摘要:
      The traditional feature extraction methods of partial discharge of Gas Insulated Switchgear (GIS) has the disadvantages of relying on expert experience, high blindness and low recognition accuracy. This paper will convert PRPD data of partial discharge into gray-scale maps, the identify features of which were extracted by the convolutional neural network with the powerful adaptive feature extraction ability. The extracted features were applied to classical classifiers such as SVM, random forest, and BP neural network, to realize the effective integration of deep learning methods and traditional machine learning methods. Experiment results show that the features extracted by this method have higher differentiation degrees, which can effectively improve the accuracy of partial discharge pattern recognition.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd