• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
一种改进的YOLO目标检测方法在电缆设备异常状态识别中的应用
An improved YOLO target detection method with its application in cable device abnormal condition recognition
Received:September 13, 2018  Revised:September 13, 2018
DOI:10.19753/j.issn1001-1390.2020.02.003
中文关键词: 电缆设备状态识别  YOLO  批量归一化  RPN网络
英文关键词: state identification of cable equipment  YOLO  batch normalization  RPN network
基金项目:国家自然科学基金项目(6157010854);浙江省电力科学研究院项目(5211DS16002R)
Author NameAffiliationE-mail
Zhou ziqiang State grid zhejiang electric power research institute eezhouzq@163.com 
Chen qiang Zhejiang University 1877442524@qq.com 
Ma bihuan* Zhejiang University mbh314@zju.edu.cn 
Qi donglian Zhejiang University qidl@zju.edu.cn 
Hits: 2205
Download times: 1010
中文摘要:
      摘要:针对地下隧道电缆设备异常状态识别中目标设备较为单一、异常状态相对简单、综合识别速率和准确率较低的问题,本文提出一种改进的YOLO目标检测架构,对电缆设备进行定位和异常状态识别。首先,采用图像缩放方法调整图像尺寸为448×448,再利用卷积神经网络对特征进行提取,其中每一层采用批量归一化方法规范模型,最后通过RPN网络预测目标边界框。采用珠海地下电缆隧道中的图像数据进行仿真实验,并于YOLO和Faster RCNN算法进行对比,实验结果验证了所提出方法的有效性,且算法识别准确率较高、鲁棒性好,可有效应用于地下电缆隧道的巡检机器人系统中。
英文摘要:
      Abstract:In order to solve the problem of single target equipment, simple abnormal state, low comprehensive recognition rate and accuracy rate in the abnormal state identification of underground tunnel cable equipment, an improved YOLO target detection architecture is proposed in this paper to locate cable equipment and identify abnormal state. Firstly, the image scaling method is used to adjust the image size to 448×448, and then the features are extracted by convolutional neural network. Each layer adopts the batch normalization method to standardize the model, and finally predicts the target bounding box through the RPN network. Using the image data in Zhuhai underground cable tunnel, the simulation experiment is carried out and compared with YOLO and Faster RCNN algorithm. The experimental results verify the effectiveness of the proposed method, and the algorithm has high recognition accuracy and good robustness which can be effectively used in the inspection robot system of underground cable tunnel.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd