• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于广义回归神经网络的非侵入式负荷识别方法
Non-intrusive load identification method based on general regression neural network
Received:October 11, 2018  Revised:November 02, 2018
DOI:10.19753/j.issn1001-1390.2020.03.001
中文关键词: 非侵入式负荷识别  广义回归神经网络  光滑因子  模拟退火算法
英文关键词: non-intrusive load identification, general regression neural network, smoothing parameter, simulated annealing algorithm
基金项目:国家自然科学基金项目( 51477105)
Author NameAffiliationE-mail
Jiang Fan School of Electrical Engineering and Information,Sichuan University 897119600@qq.com 
Yang Honggeng* School of Electrical Engineering and Information,Sichuan University pqlab49@126.com 
Hits: 1420
Download times: 683
中文摘要:
      非侵入式负荷识别可以实现电网和用户的灵活双向互动,对智能电网的发展具有重大意义,而神经网络因其自学习能力及计算复杂度低等优点越来越多地应用在非侵入式负荷识别中。针对现有BP神经网络方法容易陷入局部最优、收敛速度慢的问题,本文提出了一种基于广义回归神经网络(GRNN)的非侵入式负荷识别方法。该方法使用负荷投切过程的功率、谐波、投切时间等暂态特征作为输入,应用Parzen非参数估计方法搭建网络结构,利用模拟退火算法的全局搜索能力对光滑因子进行寻优,从而建立GRNN网络模型进行负荷识别。实验结果表明,相对于BP神经网络,本文方法具有更好的识别精度和训练速度。
英文摘要:
      Non-intrusive load identification can achieve the flexible bilateral interaction between power grid and users, which is of great significant in the development of smart grid. Neural network was frequently employed in non-intrusive load identification because of its self-learning ability and low computation complexity. In order to overcome the shortcomings that BP neural network traps into local optima easily and has a low convergence speed, this paper proposes a new method based on General Regression Neural Network (GRNN). Firstly, this method uses transient features such as power, harmonic and switch time as the inputs of GRNN. Secondly, neural network structure is constructed based on Parzen non-parametric estimation method. Thirdly, simulated annealing algorithm is adopted to get the best smoothing parameter. Finally, RGNN network model is built to identify the load. Experimental results have proved that the proposed method has higher identification accuracy and training speed than BP neural network.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd