• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于SLLE的电缆附件局部放电模式识别
Pattern recognition for partial discharge of cable accessories based on SLLE
Received:November 14, 2018  Revised:November 14, 2018
DOI:10.19753/j.issn1001-1390.2019.022.005
中文关键词: 电缆附件  局部放电  相位分割  监督局部线性嵌入  模式识别
英文关键词: cable  accessories, partial  discharge, phase  segmentation, supervised  locally lnear  embedding (SLLE) pattern  recognition
基金项目:国家重点研发计划“新一代智能信息技术在配用电系统中的应用研究与平台测试”(2017YFE0112600)
Author NameAffiliationE-mail
Sun Maoyi National Institute of Measurement and Testing Technology sunmaoyi@126.com 
Yang Lin CRRC MEISHAN CO.,LTD 475225389@qq.com 
Zhou Zhitong* Southwest Petroleum University 1807558205@qq.com 
Gao Chunlin Southwest Petroleum University 402306163@qq.com 
Zhang Anan Southwest Petroleum University 2564764@qq.com 
Hits: 1734
Download times: 504
中文摘要:
      为更全面地提取局部放电信号的特征值信息,提高识别率,将局部放电统计特征参数和矩特征参数相结合,提取出高维的特征值。从不同的角度出发从而结合两种不同的方法对局放特征提取的优点。同时在流形学习非监督的基础上引入了监督信息,从而保证高维到低维的映射在保留流形某些结构的同时也可进一步分离不同类别的流形。利用基于监督的局部线性嵌入(Supervised Locally Linear Embedding,SLLE)对局部放电特征值进行降维优化处理,提取出具有较高分类能力的最优特征值。然后,利用电力电缆附件的4种典型缺陷进行实验对比,结果表明本文方法较好的提取出最优特征值,且能得到更准确的识别结果。
英文摘要:
      In order to extract the feature value information of the partial discharge signal more comprehensively and improve the recognition rate, statistical feature parameters and moment feature parameters are combined to extract high-dimensional eigenvalues from different angles. The advantages of partial discharge feature extraction are combined with two different methods. At the same time, based on non-supervised manifold learning, a supervised information is induced to the algorithm to ensure the map from high dimension to low dimension to retain some manifold structures and also to seperate different kinds of manifolds. The Supervised Locally Linear Embedding (SLLE) is used to reduce the dimension of the eigenvalues, and the optimal eigenvalues with higher classification ability are extracted. Then, the experimental comparison of four typical defects of power cable accessories shows that the proposed method can extract the optimal eigenvalues better and obtain more accurate recognition results.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd