• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于业务特征的智能电能表需求预测模型研究
Study of a Demand Prediction Model of Smart Electric Energy Meter Based on Service Feature
Received:December 06, 2018  Revised:December 06, 2018
DOI:
中文关键词: 智能电能表  需求预测  业务特征  平稳性检验  ARIMA  LSTM  组合模型
英文关键词: smart electric energy meter, demand prediction, service feature, stationarity test, ARIMA, LSTM, combined model
基金项目:
Author NameAffiliationE-mail
Peng Chuning State Grid Corporation of China chuning-peng@sgcc.com.cn 
Du Xingang State Grid Corporation of China xingang-du@sgcc.com.cn 
Li Tianyang Nari Group Corporation litianyang@sgepri.sgcc.com.cn 
Chu Pengfei* Nari Group Corporation chupengfei@sgepri.sgcc.com.cn 
Hits: 2022
Download times: 810
中文摘要:
      针对目前国家电网公司下辖省(市)公司对电能表需求缺乏有效预测手段、易造成电能表配送和仓储成本增加的现状,提出了一种基于业务特征的电能表需求预测模型。该模型首先对电能表需求按安装类型进行分类,然后基于平稳性检验区分影响各安装类型电能表需求的主要影响因素,进而自适应地使用ARIMA时间序列模型或LSTM神经网络模型对电能表需求进行分析预测。实践验证表明,相较于现有方法,该模型具有更高的准确性。
英文摘要:
      Currently, provincial grid companies lack effective methods of predicting the demand of electric energy meters, which may increase the storage and dispatching cost. To solve this problem, this paper proposes a demand prediction model of electric energy meter base on service feature. This model classifies electric energy meters by installation types, then use stationarity test to determine the type of main factors that influence the electric energy meter demand of each installation type, thus adaptively select between ARIMA or LSTM model to analyze and predict the demand. The result of case analysis shows that this model can predict with higher accuracy than existing models.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd