• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于预测的智能电能表数据简化的轻量级框架
Research on Lightweight Framework for Data Simplification of Intelligent Meter Based on Prediction
Received:January 29, 2019  Revised:March 04, 2019
DOI:
中文关键词: 高级计量设施  智能电能表  预测  数据简化  统计特征
英文关键词: Advanced Metering Infrastructure  Smart meters  Data simplification  Statistical characteristics
基金项目:
Author NameAffiliationE-mail
Jun Wang* State grid center of measurement,Liaoning Electric Power Co.,Ltd.,Shenyang wangjun1269@126.com 
Dewei Li State grid center of measurement,Liaoning Electric Power Co.,Ltd.,Shenyang wangjun1269@126.com 
Hong Xue State grid center of measurement,Liaoning Electric Power Co.,Ltd.,Shenyang wangjun1269@126.com 
Jun Wu State grid center of measurement,Liaoning Electric Power Co.,Ltd.,Shenyang wangjun1269@126.com 
Hits: 1669
Download times: 651
中文摘要:
      在高级计量设施(AMI)中,为了最大限度减少智能电能表的数据传输量和数据简化,提出一个基于预测的轻量级框架。首先,建立决策树以找到预测方法和用电数据统计特征之间的关系;然后,分析用电数据的时间序列以提取统计特征;最后,为了增加框架对智能电能表不断变化的数据模式的自适应能力,采用监督式学习方案实时切换到最适合当前数据模式的预测方法。从数据集中提取1年中10个用户的用电数据,每个用户采集的总记录数为17600个。实验结果表明,所提框架可以实现较高的数据简化准确度(DRA)和数据简化率(DRP),其中,DRA最高为96.7%,DRP最高为98.6%。
英文摘要:
      In Advanced Metering Infrastructure (AMI), In order to minimize data transmission and data simplification of smart meters, a lightweight framework based on prediction is proposed. Firstly, a decision tree is established to find the relationship between the forecasting method and the statistical characteristics of electricity consumption data. Then, the time series of electricity consumption data is analyzed to extract the statistical characteristics. Finally, in order to increase the adaptive ability of the framework to the changing data modes of smart meters, a supervised learning scheme is adopted to switch to the forecasting method which is most suitable for the current data modes in real time. Ten users" electricity consumption data in one year are extracted from the data set. The total number of records collected by each user is 17600. The experimental results show that the proposed framework can achieve high data simplification accuracy (DRA) and data simplification rate (DRP), with the highest DRA of 96.7% and DRP of 98.6%.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd