• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于晴朗系数和多层次匹配的光伏功率预测方法研究
Research on Photovoltaic Power Prediction Method Based on Sunny Coefficient and Multi-similarity Matching
Received:January 31, 2019  Revised:January 31, 2019
DOI:
中文关键词: 晴朗系数  多层次相似匹配  光伏功率预测  ARIMA时间序列
英文关键词: sunny  coefficient, multi-similarity  matching, photovoltaic  power prediction, ARIMA  time series
基金项目:
Author NameAffiliationE-mail
Wang Zhizhong* CYG SUNRI Co.,LTD 330483922@qq.com 
Han Maolin CYG SUNRI Co.,LTD hanml@sznari.com 
Hu Hai CYG SUNRI Co.,LTD huhai@sznari.com 
Chen Yao CYG SUNRI Co.,LTD chenyao@sznari.com 
Hits: 2095
Download times: 670
中文摘要:
      针对光伏功率预测系统存在训练样本选取不够合理、模型输入数据不够准确等问题,结合实际工程经验,提出了一种基于晴朗系数和多层次相似匹配的光伏功率预测方法。将历史数据划分为晴天和非晴天类型,设计两个数据队列存储和更新训练样本;利用多层次相似匹配方法对预测日数据与历史数据进行纵向与横向匹配,提取相似日实测功率数据;构建基于历史相似日发电功率的ARIMA时间序列预测模型。实际应用数据分析表明:本文提出的方法在提高准确度方面取得了良好的预测效果,具有实际推广意义。
英文摘要:
      Aiming at the problems that the selection of training samples is not reasonable and the input data of the model is not accurate enough, combined with practical engineering experience, a photovoltaic power prediction method based on sunny coefficient and multi-similarity matching is proposed. Firstly, the historical data are divided into sunny and non-sunny types, and two data queues are designed to store and update training samples. Then multi-similarity matching method is used to extract the measured power data of similar day by matching the predicted and historical data vertically and horizontally. Finally, an ARIMA time series prediction model based on the power of similar days is constructed. The analysis of practical application data show that the proposed method has achieved good prediction results in improving accuracy,and has practical significance.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd