• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于核随机逼近的概率风电预测方法
A random-approximation based probabilistic wind power forecasting method
Received:February 01, 2019  Revised:April 17, 2019
DOI:DOI: 10.19753/j.issn1001-1390.2020.10.001
中文关键词: 风电预测  概率预测  非参数预测  核随机逼近  交替方向乘子法
英文关键词: wind power forecasting, probabilistic forecasting, non-parametric estimation, random approximation, alternating direction method of multipliers
基金项目:国家自然科学基金项目( 61571392)
Author NameAffiliationE-mail
WANG Weifeng State Grid Zhejiang Electric Power Co., Ltd. wang_weifeng@zju.sgcc.com.cn 
MA Lvbin Zhejiang Huayun Information Technology Co. Ltd. gmmmfly@163.com 
WANG Heyu* Zhejiang University ra_pwpf@qq.com 
Hits: 1272
Download times: 533
中文摘要:
      针对已有的参数化的风电概率预测方法存在的问题,即提前确定的预测模型不够精确导致预测性能不佳的问题,本文提出了一种基于核随机逼近和交替方向乘子法的非参数的概率风电预测方法,即基于核随机逼近的概率风电预测方法。在不预先假定真实预测模型的具体形式的情况下,该方法能逼近任何非线性预测模型。为了验证所提出方法的有效性和优越性,基于真实风电数据集,对所提出的方法以及参数化的方法就概率风电预测性能进行比较。实验结果显示前者的平均预测误差为0.02423,而后者的平均预测误差为0.03097,那么前者的预测性能优于后者,从而验证了所提出方法的有效性和优越性。
英文摘要:
      Many existing parametric probabilistic wind power forecasting methods cannot achieve good performance due to adopting inaccurate forecasting models. Therefore, in this paper, the random-approximation technique and the ADMM algorithm were employed to develop a non-parametric probabilistic wind power forecasting method, namely, the random-approximation based probabilistic wind power forecasting (RA-PWPF) method, which is able to approximate any non-linear forecasting model without specifying the form of the true forecasting model in advance. The proposed method and the parametric method were compared in terms of the forecasting performance through simulations conducted on a real wind power data set. The simulation results showed that the average forecasting errors of the proposed method and the parametric method are 0.02423 and 0.03097, respectively, and thus the former outperformed the latter. Then, the effectiveness and the superiority of the proposed method were verified.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd