• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
电网电压不平衡时MMC基于非线性微分平滑控制方法*
Nonlinear differential flatness control method for modular multilevel converter with unbalanced grid voltage
Received:February 20, 2019  Revised:February 20, 2019
DOI:10.19753/j.issn1001-1390.2020.12.018
中文关键词: 模块化多电平换流器  微分平滑  电网电压不平衡  Lyapunov
英文关键词: Modular  multilevel converter, Differential  flatness, Unbalanced  grid voltage, Lyapunov
基金项目:国家自然科学基金项目(51407114);上海市自然科学基金项目(15ZR1418200,15ZR1418000);上海市科技创新行动计划项目(16DZ0503300)
Author NameAffiliationE-mail
Wang Yanqing* College of Electrical Engineering,Shanghai University of Electric Power 2281210449@qq.com 
Xue Hua College of Electrical Engineering,Shanghai University of Electric Power distributedpower@163.com 
Wang Yufei College of Electrical Engineering,Shanghai University of Electric Power wangyufei@shiep.edu.cn 
Hits: 1192
Download times: 473
中文摘要:
      针对电网电压不平衡时,模块化多电平换流器(MMC)系统出现网侧电流不对称问题,提出了非线性微分平滑控制方法。根据MMC系统拓扑,建立暂态数学模型,并分别对正、负序系统进行微分平滑性分析。功率外环采用基于功率前馈的微分平滑控制方法,为电流内环提供参考值;电流内环采用基于Lyapunov稳定理论的微分平滑控制方法,能够快速抑制负序电流,实现系统输出电流三相对称。在Matlab/Simulink平台上进行该控制方法和传统矢量控制方法的仿真对比,验证了非线性微分平滑控制方法具有更好的快速性和稳定性。
英文摘要:
      In the case of the unbalanced grid voltage, modular multilevel converter(MMC) system has an asymmetrical problem with the grid current, and the nonlinear differential flatness control method is proposed. According to the topology of MMC system, the transient mathematical model is established, and the differential flatness of positive and negative order systems is analyzed. The power outer loop adopts the differential flatness control method based on power feedforward to provide reference value for the current inner loop. The current inner loop adopts the differential flatness control method based on Lyapunov stability theory, which can quickly suppress the negative sequence current and realize the three-phase symmetry of the system"s output current. The simulation comparison between the control method and the traditional vector control method on Matlab/Simulink platform verifies that the nonlinear differential flatness control method has better rapidity and stability.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd