• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
改进的并行模糊核聚类算法在电力负荷预测的应用
Powered Big Data Clustering Algorithm Based on Multi-Kernel Fuzzy C-Means Clustering
Received:March 12, 2019  Revised:March 12, 2019
DOI:10.19753/j.issn1001-1390.2019.011.009
中文关键词: 用电大数据  短期负荷预测  多核模糊C均值聚类  并行计算
英文关键词: power consumption big data  short-time load forecast  multi-kernel fuzzy C-means clustering  parallel computing
基金项目:国家电网公司科技项目
Author NameAffiliationE-mail
Xie Wei Electric Power Research Institute,SMEPC shdl_863@163.com 
Zhao Qi* Fudan University zhaoq17@fudan.edu.cn 
Guo Naiwang Electric Power Research Institute, 76629513@qq.com 
Su Yun Electric Power Research Institute oppenvi@163.com 
Tian YingJie Electric Power Research Institute, SMEPC 13901712348@163.com 
Hits: 1544
Download times: 685
中文摘要:
      用户用电典型模式的分类预测是电力负荷预测的重要组成部分。针对单核模糊C均值算法在电力大数据挖掘中不能兼顾预测精度和普适性能好的问题,提出了一种电力短期负荷场景中改进的无监督学习多核模糊C均值聚类算法,建立了双层神经网络的电力数据负荷预测模型对比该改进的算法对电力负荷预测效果的影响。用户数据由MapReduce并行化处理加速。数值实验结果表明:改进的算法在实际电力用户数据集中具有广泛的适用性和有效性,同时能显著提高电力短期负荷预测的精度。
英文摘要:
      The classification prediction of the typical mode of user consumption is an important part of electric power load forecasting. The single-core fuzzy C-means algorithm cannot balance the prediction accuracy and the universal performance in electric power big data mining, so this paper presents an improved unsupervised learning multi-core fuzzy C-clustering algorithm in the short-term power load scenario. A power data load forecasting model of the double-layer neural network is established to compare the effects of the improved algorithm. User data is accelerated by MapReduce parallelization. The numerical experiments show that the improved algorithm has wide applicability and effectiveness in the actual power user data set, and can significantly improve the accuracy of short-term load forecasting.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd