• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于SMES/BESS混合储能抑制风电功率波动的控制策略
Control Strategy for Suppressing Wind Power Fluctuation Based on SMES/BESS Hybrid Energy Storage
Received:March 22, 2019  Revised:March 22, 2019
DOI:10.19753/j.issn1001-1390.2020.05.016
中文关键词: 混合储能  超导磁储能  混合遗传算法  变参数  充放电深度
英文关键词: Hybrid  energy storage, SMES, Hybrid  genetic algorithm, variable  parameter, depth  of charging  and discharging
基金项目:国家自然科学基金项目( 51767015);甘肃省自然科学基金项目( 2016GS07210)
Author NameAffiliationE-mail
Pan Shengxiong School of Automation and Electrical Engineering,Lanzhou Jiaotong University 156236242@qq.com 
Zhao Xia* School of Automation and Electrical Engineering,Lanzhou Jiaotong University zhaoxia@mail.lzjtu.cn 
Luo Yinghong School of Automation and Electrical Engineering,Lanzhou Jiaotong University luoyinghong@mail.lzjtu.cn 
Jing Hongtao School of Automation and Electrical Engineering,Lanzhou Jiaotong University 719011448@qq.com 
Hits: 2163
Download times: 528
中文摘要:
      针对风能的随机性和波动性,风力发电系统易出现功率波动的问题,本文采用超导磁储能(SMES)和蓄电池(BESS)混合储能的方式来平抑功率波动,提出了一种改进型混合遗传算法的变参数荷电状态(SOC)分区控制优化策略。基于自适应学习的思想对算法进行了改进,使得算法的收敛速度和精确度得以提高。将储能系统荷电状态剩余量和荷电状态分区限值作为改进后混合遗传算法的目标函数和边界条件。所得目标结果作为滤波器滤波时间常数修正值对其进行修正,从而实现功率二次分配。在 MATLAB/Simulink中搭建仿真模型验证了该控制策略的有效性。所提控制策略可以对任意时刻SMES和BESS出力进行最优配合,同时能减小电池充放电深度和提高对风电功率波动的平抑效果,且能有效提高混合储能系统的使用寿命。
英文摘要:
      For the randomness and volatility of wind energy, wind power generation systems are prone to power fluctuations, power fluctuations can be stabilized by using superconducting magnetic energy storage (SMES) and battery (BESS) hybrid energy storage methods. An improved hybrid genetic algorithm for variable parameter state-of-charge control strategy is proposed. The algorithm is improved by the idea of adaptive learning, and the convergence speed and accuracy of the algorithm are also improved. The state of charge residual and state partition of state of charge are used as the objective function and boundary conditions of the improved hybrid genetic algorithm. The obtained target result as a correction value to correct filter time constant to achieve power secondary distribution. The simulation model is built in MATLAB/Simulink to verify the effectiveness of the control strategy. The proposed control strategy can optimally match the SMES and BESS output at any time, at the same time, it can reduce the battery charging and discharging depth and improve the smoothing effect on wind power fluctuation, then it can also effectively improve the service life of the hybrid energy storage system.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd