• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于梯度提升决策树静态电压稳定裕度评估
Static Voltage Stability Margin Prediction based on Gradient Boosting Regression Tree
Received:April 15, 2019  Revised:April 15, 2019
DOI:10.19753/j.issn1001-1390.2020.20.006
中文关键词: 梯度提升决策树  静态电压稳定裕度  最优潮流  无功补偿  测量不确定性  PMU布点
英文关键词: gradient  boosting regression  tree, static  voltage stability  margin, optimal  power flow, reactive  power compensation, measurement  uncertainty, PMU  placement
基金项目:国家电网公司科技项目(52153218000H)
Author NameAffiliationE-mail
Xiao Fan State Grid Hubei Electric Power Research Institute xiaofan@163.com 
Wang Tao State Grid Hubei Electric Power Research Institute wangtao@163.com 
Rao Yuze State Grid Hubei Electric Power Research Institute raoyuze@163.com 
Zhang Yufan* School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University cqu_ee_zhangyufan@163.com 
Ai Qian School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University aiqian@sjtu.edu.cn 
Zhou Youbin State Grid Hubei Electric Power Research Institute zhouyoubin@163.com 
Hits: 2049
Download times: 549
中文摘要:
      随着特高压直流输电的发展,电网负荷集中地区无功缺乏的问题日益突出,系统电压稳定与无功功率密切相关,有必要研究电压稳定裕度的在线监测问题,以期为无功补偿装置的协调配合提供参考。基于PMU提供的数据资源,提出一种基于梯度提升决策树的电压稳定裕度在线监测方法,该方法分为离线运行点数据库的建立以及实时评估两部分。通过模拟负荷的变化,求解最优潮流模型,得到各个发电机出力状态以及对应的电压稳定裕度从而形成离线运行点数据库,并在线下对梯度提升决策树进行训练,在线做出电压稳定裕度的评估。实验结果表明,所提方法对裕度的预测准确度高于基于支持向量机回归模型,且时间可以满足实时性的要求。在测量不确定性场景下,当信噪比大于40dB时,所提方法应对噪声干扰具有较强的鲁棒性。并且基于梯度提升决策树的特征选择能力,可以为PMU的布点提供一定依据,从而实现系统可靠性和经济性的平衡。
英文摘要:
      With the development of UHVDC transmission, the problem of reactive power shortage in load concentration areas is becoming prominent. The system voltage stability is closely related to reactive power. It is necessary to study the online voltage stability margin prediction in order to provide basis for reactive power compensation. Based on the data resources provided by PMU, an online method for voltage stability margin prediction based on gradient boosting regression tree (GBRT) is proposed. The method is divided into two parts: the establishment of offline operation points database and real-time evaluation. By simulating the load change, the optimal power flow model is solved, and the output state of each generator and the corresponding voltage stability margin are obtained, and the GBRT is trained offline. The experimental results show that the proposed method has higher prediction accuracy than support vector machine, and the time can meet the requirements of real-time prediction. Under the measurement uncertainty, when the signal-to-noise ratio is greater than 40dB, the proposed method is robust to measurement uncertainty. And based on the feature selection ability of the GBRT, it can provide a basis for the placement of the PMU, thereby achieving a balance between system reliability and economics.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd