• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于趋势特征的风电功率爬坡事件检测方法
Wind power ramp event detection method based on trend feature
Received:April 28, 2019  Revised:May 07, 2019
DOI:10.19753/j.issn1001-1390.2020.18.020
中文关键词: 风电爬坡事件  旋转门算法  趋势提取  分段  爬坡检测
英文关键词: Wind  power ramp, Swinging  door algorithm, Trend  extraction, Segmentation, Ramp  detection
基金项目:国家自然科学基金项目( 项目编号)
Author NameAffiliationE-mail
ZHANG Yingchao Automated institute,Nanjing University of Information Science Technology 739136862@qq.com 
ZONG Yang* Automated institute,Nanjing University of Information Science Technology 845050048@qq.com 
DENG Hua Automated institute,Nanjing University of Information Science Technology 845050048@qq.com 
CHEN Jinjie Automated institute,Nanjing University of Information Science Technology 897625216@qq.com 
ZHANG Xuan Automated institute,Nanjing University of Information Science Technology 1120795086@qq.com 
Hits: 1370
Download times: 429
中文摘要:
      风电爬坡事件是风功率波动严重的小概率事件,因此在大数据中快速检测出爬坡事件十分关键。为提高爬坡事件的检测效率,本文根据爬坡事件蕴含显著的趋势信息,提出一种基于SDT和趋势标记相结合的风电爬坡事件检测方法。首先,采用改进的旋转门算法(SDT)对原始风电功率数据进行分段趋势提取,预提取出可能存在的爬坡事件。为避免漏检、处理不重要的分段,引入趋势标记的方法。根据提出的爬坡检测方法,对上海某风场的数据进行爬坡检测试验。结果表明,对爬坡事件进行分段提取趋势既缩短了爬坡检测时间又提高了爬坡检测精度,具有实际意义。
英文摘要:
      The wind power ramp event is a small probability event with severe wind power fluctuations, so it is very important to quickly detect the ramp event in big data. In order to improve the detection efficiency of the ramp event, this paper proposes a wind power ramp event detection method based on the combination of SDT and trend marking according to the significant trend information of the ramp event. Firstly, the improved revolving door algorithm (SDT) is used to segment the original wind power data for segmentation trend extraction, and pre-extract the possible ramp events. In order to avoid missed detection and processing unimportant segments, a method of trend marking is introduced. According to the proposed ramp test method, the data of a wind field in Shanghai is tested for ramp. The results show that the segmentation extraction trend of ramp events not only shortens the ramp detection time but also improves the accuracy of ramp detection, which has practical significance.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd