• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
电网调度系统网络安全态势感知研究
Research on network security situation awareness of electric power dispatching system
Received:May 06, 2019  Revised:May 06, 2019
DOI:10.19753/j.issn1001-1390.2019.017.012
中文关键词: 态势感知  网络状态转移  Q学习算法  演化博弈  调度
英文关键词: situational awareness  network state transition  Q learning algorithm  evolutionary game  scheduling
基金项目:
Author NameAffiliationE-mail
Liu Hongjun* State Grid Shandong Electric Power Company 3426016855@qq.com 
Guan Yi State Grid Shandong Electric Power Company 3426016855@qq.com 
Liu Yong State Grid Shandong Electric Power Company 3426016855@qq.com 
Geng Yujie State Grid Shandong Electric Power Company 3426016855@qq.com 
Hits: 2104
Download times: 618
中文摘要:
      电力系统的安全稳定对于国家安全具有非常重要的意义。作为电力系统的主要环节之一,电力调度网络极易受到高级病毒软件的攻击,而目前常规的基于边界保护的物理隔离不足以抵挡高级病毒软件的入侵,因此开展电力调度系统网络安全防护研究具有非常重要的理论价值与工程意义。基于此,构建了基于Q学习算法的网络状态转移算法,预测网络攻击可能的最佳路径。改进了网络安全度量标准,在系统损失、攻击成本、防御成本的基础上,引入防御回报、网络状态转移成本,以静态经济收益作为网络状态转移的判断准则。应用演化博弈理论构建复制动态方程,动态再现攻防双方的对抗行为,计算经济收益动态变化,预测攻击行为的变化,确定最佳防御策略。实验结果表明基于Q学习算法与演化博弈理论的电力调度网络安全态势感知方案能够有效识别网络攻击的可能路径以及带来的最大威胁,有助于调度人员作出有效决策。
英文摘要:
      The power system security is great significant to national security. As one of the main links of power system, power dispatching network is vulnerable to attack by advanced virus software. At present, the physical isolation based on boundary protection is not enough to resist the invasion. Therefore, the power dispatching system network security protection research has very important theoretical value and engineering significance. Based on this, a network state transition algorithm based on Q learning algorithm is constructed to predict the best possible path of network attack. Based on the system loss, attack cost and defense cost, defense return and network state transition cost are introduced. Static economic benefit is taken as the criterion of network state transition. Using evolutionary game theory to construct replication dynamic equation, dynamically reproduce the antagonistic behavior of both attackers and defenders, calculate the dynamic change of economic returns, predict the change of attacking behavior, and determine the best defense strategy. The experimental results show that situational awareness scheme can effectively identify the possible path of network attack and the greatest threat, and help dispatchers make effective decisions.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd