• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于PCA-SVR的电能计量装置误差评估算法
Error Assessment Algorithms for Electric Energy Metering Devices Based on PCA-SVR
Received:June 04, 2019  Revised:June 05, 2019
DOI:10.19753/j.issn1001-1390.2020.19.022
中文关键词: 电能计量装置  主元分析  支持向量机回归  状态评价  合成误差
英文关键词: electric  energy metering  device, principal  component analysis, support  vector machine  regression, state  evaluation, synthetic  error
基金项目:
Author NameAffiliationE-mail
Yu Haibo* Electrica Power Research Institute hbyu@epri.sgcc.com.cn 
Wang Chunyu Electrica Power Research Institute wangchunyucau@163.com 
Yuan Xiaolei School of Electrical Engineering, Xi’an Jiaotong University 1282434368@qq.com 
Zhao Jinquan School of Electrical Engineering, Xi’an Jiaotong University, 15091285076@163.com 
Hits: 1423
Download times: 505
中文摘要:
      针对目前电能计量综合误差计算方法无法实时评价电能计量装置误差的问题,提出了一种基于PCA-SVR的电能计量装置误差评估算法。该方法首先对互感器二次信号有效值进行主元分析(PCA),通过Q统计量及其贡献率对电能计量装置进行计量状态检测和异常定位。然后建立正常计量状态下电能计量装置合成误差的多参数降维模型,通过支持向量机回归(SVR)得到互感器实际工况下的计量误差,与在线监测获得的二次回路误差、电能表误差合成得到综合误差。本文方法可以实现电能计量误差的状态评价和合成误差的实时评估,最后通过仿真验证了本文方法的准确性。
英文摘要:
      Aiming at the problem that the current comprehensive error calculation method of electric energy metering can not evaluate the error of electric energy metering device in real time, an error evaluation algorithm of electric energy metering device based on PCA-SVR is proposed. The method first carries out principal component analysis (PCA) on the effective value of secondary signal of transformer, and detects the measurement state and locates the anomaly of the electric energy metering device by Q statistics and its contribution rate. Then, a multi-parameter dimension reduction model of synthetic error of energy metering device under normal metering state is established. The measurement error under actual working condition of transformer is obtained by support vector machine regression (SVR). The comprehensive error is synthesized with secondary circuit error and watt-hour meter error obtained by on-line monitoring. This method can realize the real-time state evaluation and synthesis error evaluation of energy metering errors. Finally, the accuracy of this method is verified by simulation.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd