• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于Dropout-ILSTM网络的短期电力负荷预测
Short-term Power Load Forecasting Based on Dropout-ILSTM Network
Received:June 23, 2019  Revised:July 18, 2019
DOI:10.19753/j.issn1001-1390.2021.05.015
中文关键词: 改进长短期记忆网络,Dropout,Dropout-ILSTM网络,短期电力负荷预测
英文关键词: Improved  Long Short  Term Memory, Dropout, Dropout-ILSTM  network, short-term  power load  forecasting
基金项目:山西省自然科学基金(201801D121141)
Author NameAffiliationE-mail
Liu Haoqi School of Electrical Electronic Engineering,North China Electric Power University,Beijing 1396892591@qq.com 
Gao Fei Taiyuan University of Technology 77089396@qq.com 
Wang Yaoli Taiyuan University of Technology 1906937947@qq.com 
Wu Shuhong* Taiyuan University of Technology 1289032972@qq.com 
Hits: 2016
Download times: 471
中文摘要:
      针对传统BP神经网络难以处理电力负荷数据间关联的问题,提出了一种基于Dropout的改进长短期记忆神经网络(Dropout-ILSTM)结构用于短期电力负荷预测。首先,提出了一种改进长短期记忆神经网络(ILSTM),通过将长短期记忆网络的多个时间步输入与输出矢量进行全连接,增强了对目标系统中线性成分的表征;其次,使用Dropout对ILSTM网络进行优化,提高了网络的泛化能力,同时减少了模型的训练时间;最后,以日期、温度、电价和电力负荷数据作为输入构建了Dropout-ILSTM电力负荷预测模型。本文以AEMO提供的新南威尔士州电力负荷数据作为测试用例,实验结果表明,相较其它神经网络模型,本文提出的Dropout-ILSTM模型预测精度更高、泛化能力更强,适用于不同预测宽度的电力负荷预测。
英文摘要:
      Considering that it is difficult for traditional BP neural network to deal with the correlation between power load data, this paper proposes an Improved Long Short Term Memory based on Dropout(Dropout-ILSTM) for short-term power load forecasting. Firstly, an Improved Long Short Term Memory (ILSTM) network is proposed, which enhances the representation of linear components in the target system by fully connecting multiple time-step inputs of long- and short-term memory networks with output vectors. Secondly, using Dropout Optimizing the ILSTM network improves the generalization ability of the network and reduces the training time of the model. Finally, the Dropout-ILSTM power load forecasting model is constructed with the date, temperature, electricity price and power load data as inputs. This paper uses the NSW electric load data provided by AEMO as a test case. The experimental results show that the proposed Dropout-ILSTM model has higher prediction accuracy and more generalization ability than other neural network models. And the Dropout-ILSTM model is suitable for power load forecasting with different prediction widths.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd