• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
结合注意力机制的相对GAN螺栓图像生成*
Relativistic GAN for bolts generation with attention mechanism
Received:June 28, 2019  Revised:June 28, 2019
DOI:
中文关键词: 螺栓  生成式对抗网络  相对均值鉴别器  梯度惩罚  注意力机制
英文关键词: bolt, Generative  Adversarial Networks(GAN), relativistic  discriminator, gradient  penalty, attention  mechanism
基金项目:国家自然科学基金项目( 61871182、61401154、61773160、61302163),北京市自然科学基金项目(4192055),河北省自然科学基金项目(F2016502101、F2017502016、F2015502062),中央高校基本科研业务费专项资金项目(2018MS095、2018MS094),模式识别国家重点实验室开放课题基金(201900051)
Author NameAffiliationE-mail
Qi Yincheng School of Electrical and Electronic Engineering,North China Electric Power University qiych@126.com 
Lang Jingyi* School of Electrical and Electronic Engineering,North China Electric Power University langjyi@163.com 
Jiang Aixue School of Electrical and Electronic Engineering,North China Electric Power University zhaozhenbing@ncepu.edu.cn 
Zhao Zhenbing School of Electrical and Electronic Engineering,North China Electric Power University jiangaixue.1996@gmail.com 
Nie Liqiang School of Computer Science and Technology,Shandong University nieliqiang@gmail.com 
Hits: 1881
Download times: 541
中文摘要:
      螺栓缺陷非常容易引起输电线路异常甚至故障,但大量的缺陷数据难以获得。将生成式对抗网络应用于缺陷螺栓图像的生成,针对生成过程中存在的图像质量差、生成样本单一,模型收敛缓慢等问题,提出一种基于改进DCGAN的螺栓图像生成方法。首先在损失函数中加入相对均值鉴别器和梯度惩罚,平衡了生成器和判别器的能力,提高了样本质量和模型的收敛速度;然后在模型的生成器和鉴别器中引入注意力机制,捕获图像中长距离的像素特征,提高了缺陷样本的多样性;实验结果验证了改进方法的有效性,实现了缺陷样本的扩增。
英文摘要:
      Bolt defects are very likely to cause abnormal or even faulty transmission lines, but a large amount of defect data is difficult to obtain. This paper applies the generated confrontation network to the generation of defective bolt images. This paper applies the generative adversarial network to the generation of defective bolt images. Regarding the problem of poor image quality, random sample generation, slow model convergence, etc. during the generation, a bolt image generation method based on improved Deep Convolutional Generative Adversarial Networks(DCGAN) is proposed. Firstly, the relativistic average discriminator and gradient penalty are added to the loss function, which balances the ability of the generator and the discriminator, and improves the convergence speed and image quality of the model. Then, the attention mechanism is introduced in the generator and the discriminator, the pixel features of the long distance in the picture are obtained, which improves the diversity of the defect sample. Experimental results verify the effectiveness of the algorithm and achieve the amplification of the defect samples.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd