• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进型RBF神经网络的VSG转动惯量自适应控制
Adaptive inertia control for VSG based on improved RBF neural network
Received:July 01, 2019  Revised:July 01, 2019
DOI:10.19753/j.issn1001-1390.2021.02.018
中文关键词: RBF神经网络  虚拟惯量  自适应控制  VSG  
英文关键词: RBF  neural network, Virtual  inertia, Adaptive  control strategy, VSG,
基金项目:国家自然科学基金(61203224);上海自然科学基金(13ZR1417800);上海市电站自动化技术重点实验室开放课题(13DZ2273800);上海市科技创新行动技术高新技术领域重点项目(1451110120);上海市重点科技攻关计划(上海市科委地方院校能力建设项目)(14110500700)
Author NameAffiliationE-mail
Yang Xuhong* College of Automatic Engineering,Shanghai University of Electric Power yangxuhong.sh@163.com 
Yao Fengjun College of Automatic Engineering,Shanghai University of Electric Power yaofengjunde@163.com 
Hao Pengfei College of Automatic Engineering,Shanghai University of Electric Power 1320768475@qq.com 
Lu Hao College of Automatic Engineering,Shanghai University of Electric Power 878311424@qq.com 
Hits: 1824
Download times: 459
中文摘要:
      与传统同步发电机相比,虚拟同步发电机(VSG)具有参数灵活可调的优势,特别是虚拟惯量和虚拟阻尼能够对VSG稳定性产生显著影响。RBF神经网络对于连续非线性函数具有很好的逼近效果,且算法简单,学习能力强大,学习速度快,能够满足实时控制的需求。本文基于控制对象的特性,对RBF神经网络进行改进,并设计出一种全新的自适应控制策略。该策略使用改进RBF神经网络对VSG虚拟惯量J进行在线调整。在Matlab中将神经网络算法融合入控制对象建立自适应仿真模型,对所提控制策略进行仿真验证。仿真结果表明,该自适应控制策略能够有效提高虚拟同步发电机频率稳定性。
英文摘要:
      Compared to conventional synchronous generators, virtual synchronous generator (VSG) enjoys the advantage of flexible controllability. In particular, virtual inertia and virtual damping can have a substantial impact on the stability of VSG. RBF neural network, which enjoys simple algorithm, strong ability of learning and fast learning rate, has good approximation for continuous non-linear function and it can meet the needs of real-time control. Based on the characteristics of the control object, this paper improves the RBF neural network and designs a new adaptive control strategy which uses improved RBF neural network to adjust virtual inertia J of VSG. The neural network algorithm is integrated into the control object to establish an adaptive simulation model in Matlab, and the proposed control strategy is verified by simulation. The results show the adaptive control strategy can effectively improve frequency stability of VSG.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd