• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
多源异构数据融合的避雷器运行状态评价方法
Condition Assessment of Arresters Based on Multi-Source Heterogeneous Data Mining
Received:July 04, 2019  Revised:July 04, 2019
DOI:10.19753/j.issn1001-1390.2020.19.021
中文关键词: 避雷器  状态评价  数据挖掘  随机森林  自然语言处理
英文关键词: Arrester  condition assessment  data mining  random forest  natural language processing
基金项目:广东省电力公司重大科技项目(GDKJXM20162460)
Author NameAffiliationE-mail
WANG Yan School of Electrical and Electronic Engineering,Huazhong University of Science Technology jiangyiwen@hust.edu.cn 
JIANG Yiwen* School of Electrical and Electronic Engineering,Huazhong University of Science Technology jiangyiwen@hust.edu.cn 
LI Lee School of Electrical and Electronic Engineering,Huazhong University of Science Technology leeli@hust.edu.cn 
WEI Dongliang Dongguan Power Supply Bureau of Guangdong Power Grid Co,Ltd,Dongguan jiangyiwen@hust.edu.cn 
XUE Feng Dongguan Power Supply Bureau of Guangdong Power Grid Co,Ltd,Dongguan jiangyiwen@hust.edu.cn 
XIE Jianrong Dongguan Power Supply Bureau of Guangdong Power Grid Co,Ltd,Dongguan jiangyiwen@hust.edu.cn 
Hits: 1840
Download times: 441
中文摘要:
      长期带电运行的金属氧化物避雷器仅靠定期维修或在线监测方法无法识别其潜伏性缺陷,因此,本文结合避雷器的典型运行参量,提出了一种多源异构数据融合的设备运行状态评价方法。首先,从避雷器的带电检测信息、在线监测信息、现场运检信息、投运前信息中挑选特征参量,组成缺陷特征量数据库;然后,利用半梯形模型对定量参量进行归一化处理,利用自然语言处理技术对定性参量进行归一化处理,并提出基于随机森林优化的数据融合方法;最后,利用一变电站的所有避雷器数据进行分析。算例显示本模型的评价准确率为93.12%,且与决策树模型与支持向量机模型相比,有更优的泛化能力。
英文摘要:
      Metal oxide arrester with electric charge runs for a long time, and the latent defects cannot be identified by regular maintenance or online monitoring. Therefore, this paper proposes a data mining method to assess the operating condition of the arrester with the typical operating parameters. First, the characteristic parameters from the lightning detection, online monitoring, on-site inspection, and pre-operation information of arresters are selected and formed a defect feature quantity database. Then, the semi-trapezoidal model is used to normalize the quantitative parameters, and the natural language processing technology is introduced to normalize the qualitative parameters. Besides, a data fusion method based on random forest optimization is proposed. Finally, all of the arrester data for a substation are adopted for analysis. The example shows that the assessment accuracy of the proposed model is 93.12%, and it has better generalization ability than the decision tree model and the support vector machine model.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd