• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于DSLPSO算法的超级电容参数辨识
Parameter Identification of Super Capacitor Based on DSLPSO Algorithm
Received:July 05, 2019  Revised:July 05, 2019
DOI:10.19753/j.issn1001-1390.2021.06.005
中文关键词: 超级电容  三分之等效电路模型  双线性变换  动态自学习粒子群
英文关键词: Super capacitor  Super capacitor equivalent circuit mode  bilinear transformation  the dynamic self-learning particle swarm algorithm.
基金项目:
Author NameAffiliationE-mail
Liu Jichao* Engineering Research Center of Ministry of Education,Renewable Energy Power Generation and Grid Technology,Xinjiang University
China 
2428228052@qq.com 
Wang Weiqing Engineering Research Center of Ministry of Education,Renewable Energy Power Generation and Grid Technology,Xinjiang University
China 
1322329866@qq.com 
Wang Haiyun Engineering Research Center of Ministry of Education,Renewable Energy Power Generation and Grid Technology,Xinjiang University
China 
156248740@qq.com 
Hits: 1430
Download times: 373
中文摘要:
      针对超级电容模型多参数辨识问题以及传统辨识算法收敛精度差,收敛速度慢问题,提出基于动态自学习粒子群算法的超级电容参数辨识方法。根据超级电容三分之等效电路模型,采用双线性变换进行离散化获得辨识模型,使用动态自学习粒子群算法辨识各分支的参数。仿真结果分析表明,与基本粒子群、自适应惯性权重粒子群对比分析,基于动态自学习粒子群算法的超级电容参数辨识方法收敛速度快、收敛精度高、全局寻优能力强,可以更准确地反映出超级电容的动态特性。
英文摘要:
      In order to solve the problem of multi-parameter identification of Super capacitor model and the problems of poor convergence accuracy and slow convergence speed of traditional identification algorithm, a parameter identification method based on dynamic self-learning particle swarm optimization (pso) is proposed. According to the Super capacitor equivalent circuit model, the identification model is discretized by bilinear transformation, and the parameters of each branch are identified by dynamic self-learning particle swarm optimization.The simulation results show that, compared with the basic particle swarm and the adaptive inertial weighted particle swarm, the parameter identification method based on dynamic self-learning particle swarm algorithm has fast convergence speed, high convergence accuracy and strong global optimization ability, which can more accurately reflect the dynamic characteristics of supercapacitors.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd