• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
考虑负荷与DG随机性特征的配电网多目标动态重构
Multi-objective dynamic reconstruction of distribution network considering load and DG randomness characteristics
Received:July 20, 2019  Revised:July 20, 2019
DOI:10.19753/j.issn1001-1390.2020.21.005
中文关键词: 概率潮流  动态重构  模拟退火  负荷聚类  免疫算法  
英文关键词: Probabilistic flow  dynamic reconstruction  simulated annealing  load clustering  immune algorithm  
基金项目:国家自然科学基金项目( 51877152)
Author NameAffiliationE-mail
Xu Junfei* Tianjin University of Technology 915932699@qq.com 
gao zhi qiang Tianjin University of Technology 1373858981@qq.com 
zhou xue song Tianjin University of Technology 1071660584@qq.com 
ma you jie Tianjin University of Technology 1071660584@qq.com 
Hits: 1891
Download times: 506
中文摘要:
      传统确定性潮流和静态重构方法无法计及电网中不确定性因素的影响,为此文中提出了一种基于概率潮流考虑负荷与DG随机性特征的配电网多目标动态重构方法。首先,建立了分布式电源(DG)出力与负荷的概率模型,并采用半不变量与Gram-Charlier级数进行概率潮流计算。然后,提出了一种模拟退火-中心聚类(SA-PAM)算法,将退火机制引入PAM算中进行负荷聚类实现重构时段划分。随后,建立了以网损期望、电压越限概率、电压偏移为目标的配电网重构模型。为提升模型求解速度和效率,提出了一种多种群并行免疫算法,其中优势子种群采用高斯变异算子进行局部搜索实现快速收敛,普通子种群采取抗体交叉、超变异保证种群多样性实现全局搜索。最后,通过IEEE33节点系统进行仿真验证了所提方法的有效性。
英文摘要:
      Deterministic trend currents and static reconstruction methods cannot account for the influence of uncertainties in the power grid. For this reason, a multi-objective dynamic reconstruction method based on load and DG randomness is proposed. Firstly, the probability model of DG and load is established, and the semi-invariant and Gram-Charlier series are used to calculate the probabilistic load flow. Then, a SA-PAM algorithm is proposed to perform load clustering to realize the reconstruction period division. Subsequently, a distribution network reconstruction model with network loss expectation, voltage over-limit probability and voltage offset is established. In order to improve the speed and efficiency of the model, a multi-group parallel immune algorithm is proposed to achieve fast convergence and global search. Finally, the effectiveness of the proposed method is verified by simulation of IEEE33 node system.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd