• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进小波阈值函数和奇异值分解的电能质量扰动检测定位
Power quality disturbance detection and location based on new threshold function and singular value decomposition
Received:July 24, 2019  Revised:August 06, 2019
DOI:10.19753/j.issn1001-1390.2020.21.016
中文关键词: 电能质量扰动信号  经验模态分解  希尔伯特变换  奇异值分解
英文关键词: power quality disturbance signal  empirical mode decomposition  Hilbert transform  singular value decomposition.
基金项目:国家自然科学基金项目(51777061)
Author NameAffiliationE-mail
Gu TingYun Electric Power Research Institute of Guizhou Power Grid Co., Ltd gutingyun@126.com 
Gao Yunpeng* Hunan University gaoyp@hnu.edu.cn 
Wu Cong Hunan University congwu@hnu.edu.cn 
Lin Chenghui Electric Power Research Institute of Guizhou Power Grid Co., Ltd 920404403@qq.com 
Fan Qiang Electric Power Research Institute of Guizhou Power Grid Co., Ltd 12121760@qq.com 
Xu Meimei Electric Power Research Institute of Guizhou Power Grid Co., Ltd 3412105@qq.com 
Hits: 2209
Download times: 547
中文摘要:
      为了在噪声环境下准确提取电能质量扰动特征,本文提出基于改进小波阈值函数去噪和奇异值分解的电能质量扰动检测定位方法。首先构建改进小波阈值函数对含噪电能质量扰动信号降噪,利用经验模态分解的信号频带划分能力,实现降噪后扰动信号各模态的有效分离,再采用希尔伯特变换提取各模态幅值、频率等特征信息,同时基于奇异值分解实现对扰动信号的起止时刻的有效定位。最后分别采用不同类型的电能质量扰动信号进行仿真实验,实验证明本文提出的算法不仅具有良好的抗噪性能,同时具有较高的定位准确度和良好的鲁棒性。
英文摘要:
      In order to extract disturbance features accurately in noisy environment, a power quality disturbance detection and location algorithm based on improved wavelet threshold function denoising and singular value decomposition is proposed. The improved wavelet threshold function is used to denoise the noisy power quality disturbance signal. The frequency band division ability of empirical mode decomposition is used to separate the various modes of the disturbance signal after denoising. Hilbert transform is used to extract the characteristic information such as the amplitude and frequency of each mode. Meanwhile, the effective location of the start and stop time of the disturbance signal is realized by the principle of singular value decomposition. The simulation results of different kinds of disturbance signals show the effectiveness of the algorithm. The experiments show that the proposed algorithm not only has good anti-noise performance, but also has high positioning accuracy and good robustness.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd