• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
考虑需求响应和储能的微电网市场竞价策略
Bidding Strategy for Microgrid Market Considering Demand Response and Energy Storage
Received:July 25, 2019  Revised:July 25, 2019
DOI:10.19753/j.issn1001-1390.2021.06.019
中文关键词: 竞价策略  混合随机/区间优化  需求响应  储能灵活性  日前市场  
英文关键词: Bidding Strategy  hybrid stochastic/interval optimization  Demand Response  Energy storage flexibility  day-ahead market  
基金项目:
Author NameAffiliationE-mail
LUO Xiaodong* State Grid Shanxi Electric Power Company Metrology Center luoxiaodong_lxd@163.com 
SUN Jingkai State Grid Shanxi Electric Power Company Metrology Center sunjinkai@qq.com 
GUO Xiaoxia State Grid Shanxi Electric Power Company Metrology Center guoxiaoxia@qq.com 
WANG Huinan State Grid Shanxi Electric Power Company Metrology Center wanghuinan@qq.com 
Hits: 1725
Download times: 417
中文摘要:
      由于可再生能源出力的间歇性、负荷用电量和市场电价的不确定性这两方面因素,使得微电网内的竞价策略存在较大的风险和和较高的计算难度。为应对这些问题,本文设计采用三阶段混合随机/区间优化(hybrid stochastic/interval optimization, HSIO)模型来构建微电网内部的竞价问题,通过微电网内潜在灵活资源和实时市场支撑这两种方式来处理上述波动。其中,采用经济有效的随机规划来实现日前市场决策中的微电网利益最大化,从而解决日前市场价格的不确定性。此外,设计了一种基于快速鲁棒区间优化的灵活方法来实现实时阶段微电网的平衡成本最小化,从而应对可再生能源能出力的间歇性和实时市场电价的不确定性。算例综合比较分析了所提出方法的有效性、鲁棒性和计算复杂度。结果表明HSIO模型能够同时兼具随机规划模型的成本效益性和区间优化模型计算简单和鲁棒性的特点。
英文摘要:
      Volatile impact of intermittent renewable energy sources (RESs) on the one hand and the uncertainties of loads and market prices, on the other hand, make the bidding strategy of microgrids (MGs) too risky and high-computational problem. To cope with these challenges, the bidding problem of MGs based on a three-stage hybrid stochastic/interval optimization (HSIO) is devised in this study, which provides a trade-off between covering the volatilities by means of the MG potential flexibilities resources or by means of the energy provision from the real-time market (RTM). To tackle the uncertainties of the day-ahead market prices, the cost-effective stochastic programming (SP) is applied to maximize the profit of MG in the day-ahead stage of decision-making. In order to handle the volatilities of RESs production and uncertainties of RTM prices, a flexibility scheme based on the robust and low-computational interval optimization (IO) approach is designed to minimize the balancing cost of MG in the real-time stages. Comprehensive numerical results are provided to compare the effectiveness, robustness, and computational complexity of the proposed model. Results show that the HSIO model takes advantage of the cost-effective solution from the SP model, and the robust solution with computational simplicity from the IO model.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd