• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
计及非侵入式负荷监测及负荷预测的设备运行模式研究
Incorporating Appliance Usage Patterns for Non-Intrusive Load Monitoring and Load Forecasting
Received:August 08, 2019  Revised:August 27, 2019
DOI:10.19753/j.issn1001-1390.2020.20.005
中文关键词: 非侵入式负载监控,模糊系统,智能电网,需求侧管理,直接负载控制
英文关键词: NILM, fuzzy systems, usage patterns, smart grid, demand side management, direct load control, demand response
基金项目:中国南方电网有限责任公司科技项目(GDKJXM20173037)
Author NameAffiliationE-mail
WEI Rui-zeng* Electric Power Research Institute of Guangdong Power Grid Co,Ltd,Guangzhou unixrootzzz@163.com 
Fan Ya-zhou Electric Power Research Institute of Guangdong Power Grid unixrootzzz@163.com 
ZHOU En-ze Electric Power Research Institute of Guangdong Power Grid Co,Ltd,Guangzhou YDnengZ@163.com 
WANG Tong Electric Power Research Institute of Guangdong Power Grid Co,Ltd,Guangzhou MsJIUZL@163.com 
HUANG Yong Electric Power Research Institute of Guangdong Power Grid Co,Ltd,Guangzhou DgaoHtg@163.com 
Hits: 1768
Download times: 593
中文摘要:
      本文提出了一种新型非侵入式负载监控(non-intrusive load monitoring ,NILM)方法,该方法结合了设备使用模式(appliance usage patterns,AUP),以提高主动负载识别和预测的性能。在第一阶段,使用基于频谱分解的标准NILM算法来学习给定AUP。然后,利用所得AUP通过专门构建的模糊系统来获得设备的先验概率。 AUP基于最近的设备活动/不活动和一天中的时间,给出了每个设备在当前时刻处于活动状态的可能性度量。因此,通过AUP确定的先验概率增加了NILM算法的有效负载识别精度。将所提方法应用于美国和德国的实际家庭数据库,证明了其对主动负载估计的改进。此外,文章利用提出的基于AUP的技术,成功地制定并实施了住宅用电量预测机制,该机制可以提前5分钟预测一组房屋的总有功功率需求。
英文摘要:
      This paper proposes a novel non-intrusive load monitoring (NILM) method which incorporates appliance usage patterns (AUP) to improve performance of active load identification and forecasting. In the first stage, the AUP of a given residence were learned using a spectral decomposition based standard NILM algorithm. Then, learnt AUP were utilized to bias the priori probabilities of the appliances through a specifically constructed fuzzy system. The AUP contain likelihood measures for each appliance to be active at the present instant based on the recent activity/inactivity of appliances and the time of day. Hence, the priori probabilities determined through the AUP increase the active load identification accuracy of the NILM algorithm. Therefore, the prior probability determined by AUP increases the payload identification accuracy of NILM algorithm. Subsequently, the proposed method is applied to several groups of real home databases, which proves its ability to improve active load estimation accuracy. In addition, the forecasting mechanism of residential electricity consumption is successfully developed and implemented by using the proposed method. The experimental results show the effectiveness of the proposed method.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd