• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于智能电能表数据的非侵入式负载监测
Non-intrusive Load Monitoring Based on Smart Meter Data
Received:August 13, 2019  Revised:August 13, 2019
DOI:10.19753/j.issn1001-1390.2021.02.028
中文关键词: 负载监测  智能电表  深度学习  贝叶斯优化
英文关键词: load monitoring  smart meter  deep learning  Bayes optimization
基金项目:国家电网公司科技项目(KJ18-1-39)
Author NameAffiliationE-mail
Wang Huinan* State Grid Metering Center of Shanxi Electric Power Company wanghn_sgcc@outlook.com 
Xue Jianli State Grid Metering Center of Shanxi Electric Power Company wanghn_sgcc@outlook.com 
Liu Jiayi State Grid Metering Center of Shanxi Electric Power Company wanghn_sgcc@outlook.com 
Hits: 1604
Download times: 598
中文摘要:
      非侵入式负载监测(non-intrusive load monitoring,NILM)旨在将家庭总用电分解为含有多个组分的负载信号,以识别出不同用电设备的用电特征并实现异常用电的自动检测。传统方法通常将NILM视为分类问题处理,在忽视了负载中的大量功率波动细节的同时,当用电设备增加时,模型的复杂度大幅上升,从而在实用性上受到限制。针对这一问题,提出将NILM作为序列到序列到回归问题,使用长短期记忆网络(long short-term memory,LSTM)学习设备负载中的长期依赖,提高回归性能。此外,引入了非因果结构与贝叶斯参数优化框架解决模型在处理多状态设备时的问题,提升模型表现。在真实的智能电表数据上的实验表明,该方法优于当前其他主流方法。
英文摘要:
      Non-intrusive load monitoring (NILM) aims at decomposing the aggregate electricity load to identify the individual contribution of different appliances and detecting outliers. In traditional methods, NILM is considered as a classification task, which causes ignoration of details in signals, and when the number of appliances rises, complexity of model increases rapidly, and applicability is limited. To overcome these shortcomings, a long short-term memory (LSTM) based method where NILM is treated as a regression task from sequence to sequence. LSTM is exploited to learn long-term dependence in sequence for improving performance of the regressor. Furthermore, non-causal structure and Bayesian optimization frame are introduced for dealing with appliances with multiple states. Experimental results on real-world dataset indicate the superiority of the proposed method compared to current mainstream methods.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd