• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于深度循环卷积模型的非侵入式负荷分解方法
A non - invasive load decomposition method based on deep circular convolution model
Received:September 12, 2019  Revised:October 16, 2019
DOI:10.19753/j.issn1001-1390.2020.23.007
中文关键词: 电力分项计算、错峰用电、循环卷积神经网络、非侵入式负荷分解、空间时间特征、drouput、迁移学习、隐马尔可夫
英文关键词: Itemized power calculation, off-peak power consumption, circular convolutional neural network, non-invasive load decomposition, spatial and temporal characteristics, drouput, migration learning, hidden markov
基金项目:贵州省科技计划项目([2018]5615)
Author NameAffiliationE-mail
yudengwu School of electrical engineering, guizhou university, guiyang, guizhou 1344732766@qq.com 
liu Min* School of electrical engineering, guizhou university, guiyang, guizhou 1344732766@qq.com 
Hits: 1217
Download times: 546
中文摘要:
      电力分项计算是智能电表的一个重要环节,即对接入户线的各个电器设备进行用电消耗检测。对电力公司进行精准预测,提高系统稳定性可靠性,制定调度方案,设计“错峰用电”费率结构,发现设备老化和故障有着重要意义。为了实现电力分项计算,文中提出了一种基于深度循环卷积神经网络的非侵入式负荷分解方法。对目标电器的不同功率状态进行编码,用循环卷积神经网络提取输入负荷总功率的空间时间特征。对输入数据进行归一化提高模型训练速度,用drouput技术降低模型过拟合,用迁移学习技术实现对不同目标电器的功率状态预测建模。并和传统的隐马尔可夫模型进行对比。文中采用公开的redd数据集,结果证明文中所提出的模型能很好预测目标电器的功率状态。
英文摘要:
      The itemized calculation of electricity is an important part of the smart meter, which is to test the consumption of electricity of each electrical equipment in the entry line. It is of great significance to accurately predict the power companies, improve the stability and reliability of the system, formulate scheduling plans, design the rate structure of "off-peak electricity", and discover the aging and failure of equipment. A non-invasive load decomposition method based on deep cyclic convolutional neural network is proposed in this paper. Different power states of target electrical appliances are coded and the spatial and temporal characteristics of the total power of input load are extracted by circular convolutional neural network. The normalization of input data improves the speed of model training, drouput technology is used to reduce model fitting, and transfer learning technology is used to realize the power state prediction modeling of different target electrical appliances. And compared with the traditional hidden markov model. The results show that the model proposed in this paper can predict the power state of the target electrical appliance well.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd