• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于XGBoost算法融合多特征短期光伏发电量预测
Multi-Feature Short-term Photovoltaic Generation Forecasting Based on XGBoost Algorithm
Received:September 21, 2019  Revised:September 21, 2019
DOI:10.19753/j.issn1001-1390.2020.24.010
中文关键词: XGBoost算法  正则化惩罚函数  特征相关性分析  K折交叉验证  光伏发电出力预测
英文关键词: XGBoost algorithm  Regularized penalty function  Features correlation analysis  K-Fold Cross Validation  Prediction of photovoltaic power generation..
基金项目:国家自然科学基金资助项目(51777015);湖南省教育厅创新平台开放基金资助项目(17K001).
Author NameAffiliationE-mail
Peng Shurong changsha university of science and technology 2950193732@qq.com 
zhengguodong* changsha university of science and technology 1961582977@qq.com 
huangshijun Changsha University Of Science And Technology 610429401@qq.com 
LI BIN changsha university of science and technology 495681419@qq.com 
HU Zebin changsha university of science and technology 610945270@qq.com 
Hits: 1935
Download times: 628
中文摘要:
      针对目前光伏发电过程中由于“弃光”现象导致能源利用率低和经济性差等问题,提出一种基于XGBoost算法融合多种特征的短期光伏发电量预测的方法。首先介绍XGBoost算法的基本原理,并引入正则化惩罚函数和误差函数来构建光伏预测模型的目标函数;并分析了光伏发电量和各特征之间的皮尔森相关系数,同时对特征的异常数据进行预处理。在训练过程中为了避免对模型超参数的影响,采用K 折交叉验证(K Fold Cross Validation)对数据的训练集、验证集和测试集进行划分;训练完模型参数后把测试集数据放到光伏预测模型中,预测得到未来三天的光伏发电量。对比实验选择其他两种预测方法SVM和LSTM,实验结果表明XGBoost算法在预测光伏发电中的有较高的准确性和实用性。
英文摘要:
      For the problems of low energy utilization and poor economy caused by "light abandonment" phenomenon in the current photovoltaic power generation process, a short-term photovoltaic power generation forecasting method based on XGBoost algorithm mixing multiple features is proposed. Firstly, the basic principle of XGBoost algorithm is introduced, and described briefly the advantages compared with other methods. The objective function of photovoltaic prediction model is constructed by introducing regularization penalty function and error function, and the abnormal data is preprocessed. Then Pearson correlation coefficients between photovoltaic power generation and each feature are analyzed.After training the model parameters, the test data are put into the photovoltaic forecasting model, and the photovoltaic power generation in the next three days is forecasted. The other two forecasting methods, SVM and LSTM, are selected for comparison experiments. The absolute values of load forecasting accuracy and load forecasting deviation rate are used as the evaluation indexes of the model. The experimental results show that XGBoost algorithm has high accuracy and practicability in forecasting photovoltaic power generation.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd