• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于自适应变异蝙蝠优化BP神经网络的短期风电功率预测
Short-term wind power prediction based on BP neural network with adaptive mutative bat optimization
Received:October 09, 2019  Revised:October 09, 2019
DOI:10.19753/j.issn1001-1390.2021.04.018
中文关键词: 自适应变异  BP神经网络  蝙蝠算法  t分布变异  短期风电功率预测
英文关键词: adaptive variation, BP neural network, bat algorithm, t-distribution variation, short-term wind power prediction
基金项目:国家重点研发计划项目(2017YFB0902800);国家电网公司科技项目(52094017003D)
Author NameAffiliationE-mail
XU Pengchao School of Electrical and Electronic Engineering,Shandong University of Technology,Zibo ,China xupengchao2012@126.com 
LI Yan* School of Electrical and Electronic Engineering,Shandong University of Technology,Zibo ,China liyan@epri.sgcc.com.cn 
ZHAO Yanlei School of Electrical and Electronic Engineering,Shandong University of Technology,Zibo ,China zhaoyanlei01@163.com 
Hits: 1234
Download times: 431
中文摘要:
      随着风电规模化并网技术的大力发展,进一步加大了对电力系统规划与运行的影响。现今,风电机组出力面临着波动的随机性以及不确定性的技术性问题,为了提高短期风电功率预测的精度,本研究提出了一种结合基于群体适应度方差自适应变异的蝙蝠优化算法(AMBA)并结合BP神经网络算法就短期风电功率进行精准预测。该模型根据群体适应度方差以及根据当前最优解的数值来定位当前最优个体的变异概率并对全局最优个体进行t分布变异,对变异后的蝙蝠个体进行二次寻优。然后利用AMBA优化BP神经网络中包含的网络参数,进而提高了BP神经网络的预测精度。通过对实例进行分析,将AMBA-BP模型预测效果与其他模型预测结果相对比。结果表明,该模型能有效提高短期风电功率预测精度。
英文摘要:
      The influence degree of wind power large-scale grid-connected on power system planning and operation is deepening day by day. Aiming at the randomness and uncertainty characteristics of the output fluctuation of wind turbines, in order to improve prediction accuracy of short-term wind power, a short-term wind power prediction method combining bat optimization algorithm (AMBA) and BP Neural network based on the adaptive variation of population fitness variance is proposed. According to variance of population fitness and the size of the current optimal solution, the model determines the mutation probability of the current optimal individual and the T-distribution variation of the global optimal individual, and two optimization of the mutated bat individuals. Then network parameters of BP neural network are optimized by AMBA, and then prediction accuracy of BP neural network is improved. By analyzing the example, prediction effect of AMBA-BP model is compared with other model prediction results. The results show that the model can effectively improve prediction accuracy of short-term wind power.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd