• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于多尺度特征融合的输电线路关键部件检测
Detection of key components of transmission lines based on multi-scale feature fusion
Received:October 14, 2019  Revised:October 14, 2019
DOI:10.19753/j.issn1001-1390.2020.03.009
中文关键词: 多尺度特征融合  输电线路  关键部件  嵌入式  深度学习  目标检测
英文关键词: 
基金项目:国家重点研发计划(2017YFB1401001-01);国家自然科学(61572345);山西省重点研发计划项目(201803D31041);国网山西省电力公司科技项目(52053017000N,5205B01800C4)
Author NameAffiliationE-mail
YANG Gang* State Grid Shanxi Electric Power Company Electric Power Research Institute,Taiyuan ghy01975@sina.com 
zhangxingzhong Taiyuan University of Technology School of Software, 1659898176@qq.com 
Hits: 1744
Download times: 515
中文摘要:
      针对输电线路无人机实时巡检过程中,通用目标检测算法在移动端运行速度过慢或无法运行的问题,提出一种将多尺度特征融合方法与输电线路关键部件的检测相结合的算法MSFF-KCD(Multi-scale feature fusion in key component detection)。该算法结合关键部件的特征,使用深度可分离卷积设计了特征提取网络DPNets,提高了算法在具有边缘计算能力的移动端ARM设备上的运行速度,同时采用多尺度特征融合方法,将分辨率低的特征图与分辨率高的特征图进行融合,使用多个特征融合后的特征图进行分类与检测,提高了算法的平均精度。选取了绝缘子、悬垂线夹、防震锤三类关键部件进行实验,结果表明,该算法在ARM设备上可达到每张66ms的检测速度和86%的准确率,适用于移动端关键部件检测。
英文摘要:
      【】Aiming at the problem that the general target detection algorithm runs too slowly or cannot run on the mobile terminal during the real-time inspection of the UAVs on the transmission line, an algorithm MSFF-KCD combining the multi-scale feature fusion method with the detection of key components of the transmission line is proposed. The algorithm combines the characteristics of key components, and uses the depthwise separable convolutions to design the feature extraction network DPNets, which improves the running speed of the algorithm on the mobile ARM device with edge computing capability, and adopts the multi-scale feature fusion method. The low-resolution feature maps are combined with high-resolution feature maps, and the feature maps with multiple feature fusions are used for classification and detection, which improves the average accuracy of the algorithm. Three key components of insulator, suspension clamp and anti-vibration hammer are selected for experiments. The results show that the proposed algorithm can achieve a detection speed of 66ms and an accuracy of 86.09% on ARM devices, which is suitable for mobile terminal key components detection.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd