• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于DTW-FCBF-LSTM模型的超短期风速预测
Ultra-Short Term Wind Speed Prediction Based on DTW-FCBF-LSTM Model
Received:October 17, 2019  Revised:November 04, 2019
DOI:10.19753/j.issn1001-1390.2020.04.015
中文关键词: 风速预测  人工智能  动态时间规整  快速相关过滤式算法  长短期记忆神经网络
英文关键词: wind speed prediction  artificial intelligence  dynamic time warping  fast correlation-based filter algorithm  long-short term memory network
基金项目:
Author NameAffiliationE-mail
dongzhiqiang* Hohai University dzq_12345678@163.com 
Hits: 2210
Download times: 703
中文摘要:
      为了实时调整电网调度计划、提高电网消纳风电的能力,提出了一种基于动态时间规整(DTW)进行相似数据分析、快速相关过滤方法(FCBF)进行输入属性特征选择、以及基于长短期记忆神经网络(LSTM)的超短期风速预测方法。首先利用DTW方法筛选出与预测数据相似性高的训练样本;然后运用FCBF算法得到优选的输入特征集;最后,构建LSTM模型进行超短期风速预测。以风电场实测数据为算例,将文中方法与现有算法的预测精度进行了对比,验证了所提方法的有效性和先进性。
英文摘要:
      In order to adjust the grid dispatching plan in real time and improve the grid"s ability to absorb wind power , a new ultra-short term wind speed prediction method is put forward based on dynamic time warping (DTW)-fast correlation-based filter(FCBF) and long-short term memory neural network(LSTM). Firstly, similarity of historical wind speed data is analyzed by using DTW method, and high similarity data to the predicted day are selected. Secondly, the FCBF method is used to select the optimal input feature set. Finally, the LSTM model is applied to predict the ultra-short term wind speed. The measured data of wind farm are forecasted, and the effectiveness and superiority of the proposed method is verified by comparing the prediction error with existing methods.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd