• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于GWO-MLP的光伏系统输出功率短期预测模型
Short term prediction model of output power of photovoltaic system based on GWO-MLP
Received:October 22, 2019  Revised:October 22, 2019
DOI:10.19753/j.issn1001-1390.2022.07.010
中文关键词: 功率预测  多层感知器  灰狼优化
英文关键词: power  forecast, multi  layer perceptron, grey  wolf optimizer
基金项目:河北省自然科学基金资助项目(E2018202282);天津市自然科学基金重点项目(19JCZDJC32100)
Author NameAffiliationE-mail
Zhang Huijuan School of Electrical Engineering,Hebei University of Technology,State Key Laboratory of Reliability and Intelligence of Electrical Equipment 837847257@qq.com 
Liu Qi* School of Electrical Engineering,Hebei University of Technology,State Key Laboratory of Reliability and Intelligence of Electrical Equipment 837847257@qq.com 
Cen Zeyao School of Electrical Engineering,Hebei University of Technology,State Key Laboratory of Reliability and Intelligence of Electrical Equipment 1109418062@qq.com 
Li Lingling School of Electrical Engineering,Hebei University of Technology,State Key Laboratory of Reliability and Intelligence of Electrical Equipment lilinglinglaoshi@126.com 
Hits: 2054
Download times: 394
中文摘要:
      准确预测光伏系统的输出功率对微网系统的优化调度具有重要意义。为了减小光伏系统输出功率短期预测误差,文中采用多层感知器(Multi Layer Perceptron,MLP)神经网络作为主要的预测载体,将光照强度、温度、风速数据作为MLP的输入,光伏系统的输出功率作为MLP的输出,采用光伏电站的历史数据对MLP进行训练,并针对MLP在初始化权重和偏置量中存在的随机性问题,提出运用改进灰狼算法(Grey Wolf Optimizer,GWO)对MLP的初始权重和偏置量进行优化,减小MLP随机初始化的误差。仿真结果显示,本文提出的GWO-MLP在均方误差(Mean Square Error,MSE)、均方根误差(Root Mean Square Error,RMSE)、平均绝对误差(Mean Absolute Error,MAE)方面较MLP、Elman神经网络、支持向量机(Support Vector Machine,SVM)、极限学习机(Extreme Learning Machine,ELM)都有明显提高,表明所提方法可以准确预测光伏系统的输出功率。
英文摘要:
      Accurately predicting the output power of PV system is of great significance for optimal scheduling of microgrid systems. In order to reduce the short-time prediction error of photovoltaic system output power, the paper adopts a multi layer perceptron (MLP) neural network is used as the main solution, and the radiance, temperature and wind speed are taken as the input of the MLP, and the output power of the PV system is used as the output of the MLP. The historical data of PV plant is used to train MLP. The improved grey wolf optimizer (GWO) is used to optimize the initial weights and biases of MLP to reduce the error of random initialization of MLP. The simulation results show that the proposed IGWO-MLP is better than MLP, Elman-NN, SVM, ELM in terms of mean square error, root mean square error and mean absolute error, indicating that the proposed method can accurately predict the output power of PV systems.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd