• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于高分辨率SAR影像和深度学习的输电杆塔智能识别研究
Electric Tower Target Identification Based on High-resolution SAR Image and Deep Learning
Received:October 25, 2019  Revised:October 25, 2019
DOI:10.19753/j.issn1001-1390.2020.04.012
中文关键词: 输电杆塔识别  SAR影像  YOLO v2  VGG  深度学习
英文关键词: Electric tower identification  YOLO v2  VGG  Deep learning  Satellite SAR.
基金项目:国家重点研发计划(极端条件下的大区域电网设施安全保障技术,2018YFC0809400);中国电力科学研究院创新基金项目(基于卫星遥感和深度学习的输电杆塔结构状态监测技术研究,52420018005Y)
Author NameAffiliationE-mail
YANG Zhi* China Electric Power Research Institute,Beijing,China yangzhi0713@foxmail.com 
OU Wenhao China Electric Power Research Institute,Beijing,China owhnet@163.com 
FEI Xiangze China Electric Power Research Institute,Beijing,China fxz@epri.sgcc.com.cn 
LI Chuang China Electric Power Research Institute,Beijing,China lichuang@epri.sgcc.com.cn 
MA Xiao China Electric Power Research Institute,Beijing,China maxiao@epri.sgcc.com.cn 
ZHAO Binbin China Electric Power Research Institute,Beijing,China zhaobinbin@epri.sgcc.com.cn 
Hits: 3154
Download times: 798
中文摘要:
      近年来,强降雪、洪涝等极端气象灾害频发,对输电线路安全运行造成巨大挑战。星载合成孔径雷达技术(SAR)技术作为一种广域、全天时、全天候的新型感知技术,可实现大范围输电线路受灾情况的快速评估,其中一个技术重点在于输电杆塔的快速定位及隐患识别。针对复杂背景下的高分辨率SAR影像中的电塔识别问题,现有目标检测算法在电塔识别精度和效率方面存在不足。为此,本文借助迁移学习提出一种结合YOLO v2和VGG模型级联的Two-Stage目标检测算法。在Stage-1阶段,联合滑窗和非极大值抑制算法,利用YOLO v2对整景SAR影像进行快速电塔检测,提高电塔目标的召回率。在Stage-2阶段,利用VGG分类模型对Stage-1阶段的检测结果进行目标和背景的二分类,从而进一步消除假阳性。该算法提高了电塔识别的准确性,并有效降低模型的虚警率,通过模型迁移和模型级联较准确地识别整景SAR影像的电塔目标。以2018年1月强降雪后湖北枝江的COSMO影像为例进行算法测试,结果表明电塔召回率可达85.7%。
英文摘要:
      In recent years, extreme weather disasters such as heavy snowfall and floods have occurred frequently, bring great challenges to the safe operation of transmission lines. In order to quickly assess the disaster situation of the transmission towers, it is necessary to use satellite-bone synthetic aperture radar (SAR) to quickly survey the conditions of large-scale transmission lines, and to quickly locate and identify hidden dangers of large-scale transmission towers. At present, for the identification of electric towers from high-resolution SAR images in complex background, the existing target detection algorithms have shortcomings in accuracy and efficiency. Therefore, this paper proposes a two-stage target detection algorithm that combines model cascades of YOLO v2 and VGG based on migration learning. In the Stage-1 phase, combined sliding window and non-maximum suppression algorithm, YOLO v2 is used to perform fast electric tower detection on the whole scene SAR image, and the target detection result with high recall rate is obtained. In the Stage-2 stage, the VGG classification model is used to perform secondary classification of the target and background of the target detection result in the Stage-1 stage, further eliminating false positives. This algorithm can improve the accuracy of target recognition using YOLO v2 alone, and effectively reduce the false alarm rate of the model. Through model migration and two-stage deep learning algorithm, the tower targets in the entire scene of one SAR image can be accurately identified. The algorithm is tested by COSMO image of Zhijiang, Hubei Province, and the results show that the recall rate of electric towers can reach 85.7%.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd