• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进VMD去噪的Prony-GSO联合谐波检测方法
The method of VMD-based Prony-GSO combined harmonic detection
Received:October 31, 2019  Revised:October 31, 2019
DOI:10.19753/j.issn1001-1390.2020.24.013
中文关键词: VMD去噪  Prony算法  GSO  谐波检测
英文关键词: Prony, VMD denoising, GSO, harmonic detection
基金项目:国家自然科学基金项目( 51277080)
Author NameAffiliationE-mail
WangMenghao School of Electrical and Electronic Engineering, Huazhong University of Science and Technology 437773203@qq.com 
LiKaicheng* School of Electrical and Electronic Engineering, Huazhong University of Science and Technology likaich62@163.com 
LiuChang School of Electrical and Electronic Engineering, Huazhong University of Science and Technology;State Grid Changzhou Power Supply Company lcele@foxmail.com 
WangWei School of Electrical and Electronic Engineering, Huazhong University of Science and Technology 1127140300@qq.com 
ChenXiya School of Electrical and Electronic Engineering, Huazhong University of Science and Technology 2712544185@qq.com 
Hits: 1373
Download times: 496
中文摘要:
      针对传统Prony谐波检测方法在噪声条件下存在局限性,文章提出了一种能够在较大噪声条件下准确进行谐波检测的方法。通过对采样信号进行自适应的VMD分解,利用平均周期能量进行噪声模态的选择并予以剔除,将剩余模态重组后得到适合Prony算法的平稳信号,然后对平稳信号进行Prony谐波分析得到初步的谐波特征信息,最后对谐波特征信息进行循环筛选与GSO寻优,得到最终的谐波与间谐波特征信息。利用该方法进行谐波检测仿真实验,仿真结果表明,该方法有效提高了Prony算法在较大噪声条件下的辨识准确度,具有自适应性,能够自动筛选真实频率成分,具有高效、精确的优点。
英文摘要:
      Aiming at the limitation of the traditional Prony harmonic detection method under noise conditions, The article proposes a strategy for accurate harmonic detection under large noise conditions. By adaptively VMD decomposition of the sampled signal, we use the average periodic energy to select and reject the noise mode. Recombine the residual modes to obtain a stationary signal suitable for the Prony algorithm, and then obtain the Prony algorithm on the stationary signal. Finally, cyclic filtering and GSO optimization for harmonic characteristic information, and then we can get the harmonic characteristic information. Using this method to carry out harmonic detection simulation experiment. The simulation results show that the proposed method can effectively improve the recognition accuracy of the Prony algorithm under large noise conditions. It is adaptive and can automatically filter the real frequency components. It’s also efficient and accurate.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd