• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于用户侧泛在电力物联网的空调故障感知
Fault sensing of air conditioner based on User Side WidespreadPower Internet of Things
Received:November 01, 2019  Revised:November 01, 2019
DOI:10.19753/j.issn1001-1390.2021.04.014
中文关键词: 泛在电力物联网  故障感知  数据挖掘  支持向量数据描述
英文关键词: Widespread Power Internet of Things  Fault Sensing  Data Mining  Support Vector Data Description
基金项目:国家自然科学基金资助项目(51877134)
Author NameAffiliationE-mail
Guo Ge The Ministry of Education Key Laboratory of Control of Power Transmission and Conversion,Shanghai Jiao Tong University sjzez1301@sjtu.edu.cn 
Jia Kunqi The Ministry of Education Key Laboratory of Control of Power Transmission and Conversion,Shanghai Jiao Tong University jiakunqi92815@163.com 
Zhou Huan* The Ministry of Education Key Laboratory of Control of Power Transmission and Conversion,Shanghai Jiao Tong University shenarder@sjtu.edu.cn 
He Guangyu The Ministry of Education Key Laboratory of Control of Power Transmission and Conversion,Shanghai Jiao Tong University gyhe@sjtu.edu.cn 
Wang Zhihua Electric Power Dispatching and Control Center of State Grid Shanghai Municipal Electric Power Company wangzh@sh.sgcc.com.cn 
Hits: 1613
Download times: 400
中文摘要:
      传统空调故障感知方法需要侵入式地在系统内部安装多个不同类型传感器且数据采集频率要求高,导致用户侧泛在电力物联网的基础条件不能支撑其大规模落地应用。针对上述问题,文章提出了两种仅利用智能插座和温度传感器的空调故障感知方法。数据采集频率低,且通过突变保存机制减少了数据存储量:方法一提出了基于一阶等效热参数模型的空调近似物理模型,利用模型预测值与空调实测值的残差分析进行空调故障实时感知;方法二基于支持向量数据描述(SVDD)模型得出正常运行数据描述,实现正常数据与故障数据的在线分离。结果表明,基于近似一阶等效热参数模型的方法对于滤网完全堵塞的故障实时误判率为1.46%,基于SVDD的方法的实时误判率为0。
英文摘要:
      Traditional air conditioning fault sensing methods require intrusive installation of sensors inside the system with high data acquisition frequency, causing that the conditions of Widespread Internet of Things cannot support these methods. Aiming at the above problems, this paper proposes two methods with only smart socket and temperature sensors. The frequency of data collection is low, and the amount of data storage is reduced by the mutation preservation mechanism. The first method proposes an approximate physical model based on first-order equivalent thermal parameter model, the residual value analysis of prediction and measured values is used to detect real-time faults. The second method is based on support vector data description (SVDD). The model derives a description of the normal data and enables online separation of normal and fault data. The results show that the real-time false positive rate of Method 1 is 1.46%, and that of Method 2 is zero.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd