• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于函数型数据分析的工商业居民用户电力数据清洗算法
Data cleaning algorithm for industrial and commercial residential users based on functional data analysis
Received:November 08, 2019  Revised:November 08, 2019
DOI:10.19753/j.issn.1001-1390.2021.01.002
中文关键词: 函数型数据分析  数据清洗  用电数据  特征提取
英文关键词: functional data analysis, data cleaning, electricity data, feature extraction
基金项目:国网上海市电力公司科技项目(52094017001X)
Author NameAffiliationE-mail
Tian Yingjie State Grid Electric Power Research Institute, SMEPC, Shanghai 200437, China 13901712348@163.com 
Hong Zijing* Fudan University, Shanghai 200433, China 19110840014@fudan.edu.cn 
Zhou Li Fudan University, Shanghai 200433, China 15110180016@fudan.edu.cn 
Hits: 1528
Download times: 604
中文摘要:
      用户电力数据的爆炸式增长给原始数据修正带来许多难点。文章提出用函数型数据分析(Functional Data Analysis, FDA)对错误和缺失数据进行修正与补全。通过函数估计方法,将原有观测个体的离散数据映射到一个新的函数空间,将数据中缺失的成分利用相似用户曲线特征进行修复,并搭建了针对电力大数据的数据清洗整体框架。在真实数据集上的测试结果表明,该算法能够准确地提取用户的用电特征曲线,并对错误数据和缺失数据进行准确地修复。
英文摘要:
      The explosive growth of user power data has brought many difficulties to the repairing of raw data. Functional data analysis (FDA) is proposed to complete the missing data and correct the error data in this paper. The observed discrete raw data is mapped to a new function space through the function estimation method. The missing components in the data are repaired by using similar user curve features. This paper also builds the overall framework of data cleaning for power big data. The test results on the real data set show that the proposed algorithm can accurately extract the power consumption characteristic curve of users, accurately repair the error data and complete the missing data.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd