• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于随机森林的非侵入式家庭负荷辨识方法
Nonintrusive household load identification method based on random forest
Received:November 25, 2019  Revised:December 21, 2019
DOI:10.19753/j.issn1001-1390.2021.04.002
中文关键词: 随机森林  互信息  非侵入式负荷监测  用电行为分析  非电量特征  
英文关键词: Randomforest  Mutual information  Electricity Behavior Analysis,  Non-electrical Characteristics
基金项目:
Author NameAffiliationE-mail
Li Ruyi Henan xuji instrument co. LTD 565788946@qq.com 
Zhang Peng Henan xuji instrument co. LTD 565788946@qq.com 
Liu Yongguang Henan xuji instrument co. LTD 565788946@qq.com 
Zhang Heng School of Electrical Engineering and Automation Wuhan University jaqen16@foxmail.com 
Zhou Dongguo* School of Electrical Engineering and Automation Wuhan University 329101854@qq.com 
Hits: 1584
Download times: 505
中文摘要:
      智能量测技术是智能电网的重要组成部分,为增强非侵入式家庭负荷辨识算法的适用性,本文提出了一种负荷低频监测并结合居民用电行为与外部非电力负荷特征相关的特性,建立一种基于随机森林的家庭负荷监测模型,在该模型中,首先选取常用的电气特征以及引入诸如居民负荷使用的时间特征等外部数据特征,通过互信息分析方法筛选与用电行为关联度高的多维特征量,进而采用随机森林算法对居民用电行为进行建模并进行负荷监测,从而实现对不同家庭各个类型的负荷进行有效监测。最后,算法运行在AMPds公开数据集上,并与贝叶斯分类算法进行比较,结果验证了本文算法的有效性。
英文摘要:
      Intelligent measurement technology is an important part of smart grid. In order to enhance the applicability of the non-invasive family load identification algorithm, this paper proposes a low frequency monitoring and combined with residential electricity load behavior associated with external characteristic of power load characteristic, to build a family load monitoring model based on random forest. In this model, firstly, the commonly used electrical characteristics as well as the introduction of external data such as the time characteristics of resident load characteristics, through the analysis of the mutual information method selection and multi-dimensional characteristics of electricity behavior correlation is high, and the random forest algorithm is adopted to residential electricity behavior modeling and load monitoring, So as to realize the effective monitoring of different types of load in different families. Finally, the algorithm was run on the AMPds open data set and compared with the bayesian classification algorithm, and the results verified the effectiveness of the proposed algorithm.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd