• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
考虑数据周期性及趋势性特征的长期电力负荷组合预测方法
Long-term load combination forecasting method considering the periodicity and trend of data
Received:December 16, 2019  Revised:December 16, 2019
DOI:DOI: 10.19753/j.issn1001-1390.2022.06.014
中文关键词: 长期电力负荷预测  因素耦合  BP神经网络  ARIMA  函数型非参数方法
英文关键词: long-term power load forecasting, factors coupling, BP neural network, ARIMA, functional non-parametric method
基金项目:国家电网湖北省电力公司科技项目(HB1942-507); 北京市自然科学基金资助项目(8192043)
Author NameAffiliationE-mail
jiangshan State Grid Hubei Electric Economics and Technology Research Institute 909394537@qq.com 
zhouqiupeng State Grid Hubei Electric Economics and Technology Research Institute 489603436@qq.com 
donghongchuan State Grid Hubei Electric Economics and Technology Research Institute 373487920@qq.com 
maxu* Institute of Construction Engineering and Management,North China Electric Power University baogeriletu111@163.com 
zhaozhenyu Institute of Construction Engineering and Management,North China Electric Power University zhaozhenyuxm@263.net 
Hits: 1707
Download times: 453
中文摘要:
      为解决长期电力负荷预测精度不足及模型适用性不强等问题,考虑将区域经济发展、社会发展等多项宏观指标与区域用电负荷的时间序列数据进行因素耦合。利用BP神经网络与差分整合移动平均自回归方法(ARIMA)整合改进预测模型,提高年度负荷预测模型的趋势预测能力。采用函数型非参数方法预测月度负荷数据中周期性负荷数据,将年度负荷预测与月度负荷预测相结合以提高模型整体预测精度。最后通过灰色预测等模型数据比对及MAPE误差分析方法验证,考虑数据周期性与趋势性组合的模型方法预测精度显著提升,适用于区域电力负荷的长期性预测。
英文摘要:
      In order to solve the problems of insufficient accuracy of long-term power load forecasting and poor applicability of the model, this paper considers the coupling of a number of macro indicators, such as regional economic development and social development indicators, with the time series data of regional power load. BP neural network and autoregressive integrated moving average model (ARIMA) are used to integrate and improve the forecasting model, so as to improve the trend forecasting ability of annual load forecasting model. The non-parametric function method is adopted to forecast the periodic load data in the monthly load data, and the annual load forecast is combined with the monthly load forecast to improve the overall forecasting accuracy of the model. Finally, through the comparison of grey prediction and other models and the verification of MAPE error analysis method, the prediction accuracy of the model method considering the combination of data periodicity and trend is significantly improved, which is suitable for the long-term prediction of regional power load.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd