• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进灰狼优化算法的光伏MPPT方法
Photovoltaic MPPT method based on improved grey wolf optimization
Received:December 20, 2019  Revised:January 06, 2020
DOI:10.19753/j.issn1001-1390.2022.07.014
中文关键词: 最大功率点跟踪  灰狼优化  区间收缩  反向优化
英文关键词: maximum power point tracking, grey wolf optimization, interval shrinking, opposite optimization
基金项目:
Author NameAffiliationE-mail
Zhang Zenghui PowerChina Huadong Engineering Corporation Limited zhang_zh6@ecidi.com 
Deng Yuhao* College of Electrical Engineering Zhejiang University 249428818@qq.com 
Li Chunwei PowerChina Huadong Engineering Corporation Limited li_cw@ecidi.com 
Liu Meiqin College of Electrical Engineering Zhejiang University liumeiqin@zju.edu.cn 
Hits: 1766
Download times: 459
中文摘要:
      在局部阴影情况下,光伏阵列输出的功率-电压曲线会出现多个极值,传统最大功率点追踪(Maximum power point tracking, MPPT)方法容易陷入局部最优而失效。为了提高MPPT的追踪效率和准确性,提出了一种基于改进灰狼优化算法的控制方法。在灰狼优化算法的基础上,改进算法在迭代过程中不断缩小搜索区间,提高算法的收敛速度和求解精度;同时,采用反向优化策略增大搜索过程的多样性,帮助算法跳出局部最优。仿真统计结果表明,相较于基本算法,改进算法具有更高的追踪成功率、追踪准确性和更短的追踪时间。
英文摘要:
      Under a partial shading condition, the P-U curve of the photovoltaic array output will have multiple peaks. The conventional Maximum Power Point Tracking (MPPT) method is prone to stagnation in local optimum and fail. In order to improve the tracking efficiency and accuracy of MPPT, a control method based on improved grey wolf optimization algorithm is proposed. Based on the grey wolf optimization algorithm, the improved algorithm continuously decreases the search interval during the iterative process to improve the algorithm"s convergence speed and solution accuracy. At the same time, the reverse optimization strategy is used to increase the diversity of the search process and help the algorithm jump out of the local optimum. Statistics of simulation show that the improved algorithm has higher tracking success rate, accuracy and less tracking time than the basic algorithm.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd