• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于稳态特征和IGWO-FCM模糊聚类的非侵入式负荷监测方法
Non-intrusive load monitoring method based on steady-state characteristics and IGWO-FCM fuzzy clustering
Received:December 21, 2019  Revised:January 09, 2020
DOI:10.19753/j.issn.1001-1390.2021.01.023
中文关键词: 非侵入式负荷检测  电压-电流三次谐波含量差  灰狼算法  模糊C均值聚类算法  
英文关键词: non-intrusive load detection  voltage-current third harmonic content difference  gray wolf algorithm  fuzzy C-means clustering algorithm  
基金项目:
Author NameAffiliationE-mail
Du Renren* School of Electrical Engineering,Guizhou University 942093376@qq.com 
Yang Chao School of Electrical Engineering,Guizhou University 785622539@qq.com 
Pu Yang School of Electrical Engineering,Guizhou University 646711218@qq.com 
Hits: 1028
Download times: 530
中文摘要:
      针对当前非侵入式负荷监测(NILM)方法对低功率用电设备的辨识准确率不足的问题,提出了一种改进的方法。该方法以改进FCM初始聚类中心为基础,除了采用有功功率特征外,并选取基波功率因数和电压-电流三次谐波含量差作为新特征,引入灰狼算法(GWO)和单纯形法(SF)对聚类过程进行优化,通过模糊聚类来确定负荷的种类数,实现对负荷的识别。实验结果表明,随着负荷种类的增加,该方法在不同场景下具有良好的鲁棒性和准确性。
英文摘要:
      Aiming at the problem that the current non-intrusive load monitoring (NILM) method has insufficient recognition accuracy for low-power electrical equipment, an improved method is proposed. This method is based on improving the initial clustering center of FCM. In addition to using active power feature, the fundamental wave power factor and voltage-current third harmonic content difference are selected as new features. The gray wolf algorithm (GWO) and the simplex method (SF) are introduced to optimize the clustering process, and the number of load types is determined by fuzzy clustering to realize load recognition. The experimental results show that the method has good robustness and accuracy in different scenarios with increasing load types.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd